219 Westbrook Road Ottawa, ON, Canada, KOA 1L0

> Toll free: 1-800-361-5415 Telephone: 1-613-831-0981 Fax: 1-613-836-5089 sales@ozoptics.com

BROADBAND POLARIZATION-ENTANGLED PHOTON SOURCE

PRELIMINARY

Features

- High-quality polarization and frequency entanglement
- · Broad bandwidth covering C- and L- bands
- · High fidelity and excellent stability
- · Turn-key and room-temperature operation
- · Low power consumption
- · Compact and light weight platform
- · Rugged, alignment free, all fiber design

Applications

- · Quantum imaging
- · Quantum metrology
- · Quantum key distribution networks
- Quantum computing and information processing

Product Description

This fiber-based device is a compact, robust, and alignment-free source of broadband polarization-entangled photon pairs. Based on periodically-poled silica fiber (PPSF) technology, it features turn-key, room-temperature operation, and needs little maintenance. The all-fiber design makes it environmentally stable for challenging applications such as space-based instruments. It generates high-quality polarization-entangled photon pairs at telecom wavelengths with more than 80 nm of bandwidth. This ideal entanglement source has myriad applications in quantum information processing, quantum sensing, and WDM-based quantum key distribution networks.

Performance Specifications¹

Part number: EPS-100	0-3A-1566-9/125-S				
Parameter		Max.	Typical	Min.	Unit
Signal/Idler degeneracy wavelength ²		1580	1566 ±2	1530	nm
Signal/Idler degeneracy wavelength accuracy		_	±2	-	nm
Biphoton bandwidth (3 dB) ³		>120	80	60	nm
Signal/Idler sum frequency bandwidth (3 dB)		0.4	0.2	0.1	nm
Pair-generation rate		4x10 ⁶	2x10 ⁶	1x10 ⁶	Pairs/second
Coincidence-to-accidental ratio ⁴		_	1000	100	
Fidelity ⁵ to $ \Psi\rangle = (HV\rangle + VH\rangle)/\sqrt{2}$		99.5%6	98%	97%	
Two-photon interference visibility ⁷		99.5% ⁶	98%	97%	
Physical dimensions	Width x depth x height (cm)	39 x 34.4 x 8.6			
	Weight (kg)	~4			

Note:

- 1 Under continuous-wave (CW) operation.
- ² The degeneracy wavelength is usually conveniently set at the boundary of C- and L-bands. Customized degeneracy wavelength in the indicated range is possible.
- ³ Before signal and idler is separated by the wavelength splitter.
- 4 Coincidence counts are measured on signal/idler FWHM bandwidth of 16 nm each, over 0.65 ns window, with free-run SPAD detectors having dark counts of ~5 kHz.
- ⁵ Measured on conjugated signal/idler pairs of 1 nm FWHM bandwidth over 80 nm centered at degeneracy. Without subtracting accidentals.
- 6 Limited by detector dark counts.
- Measured for both HV basis and AD basis. Without subtracting accidentals.

Optical Specifications

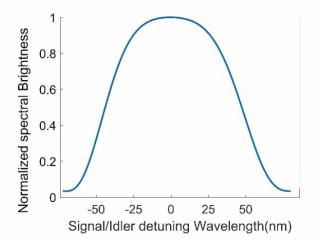


Figure 1. Typical biphoton spectrum.

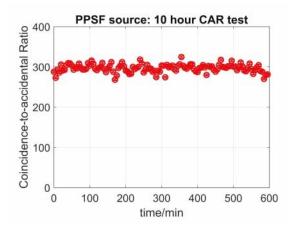


Figure 2. Typical Coincidence-to-Accidental Ratio (CAR) over 10 hours of continuous operation.

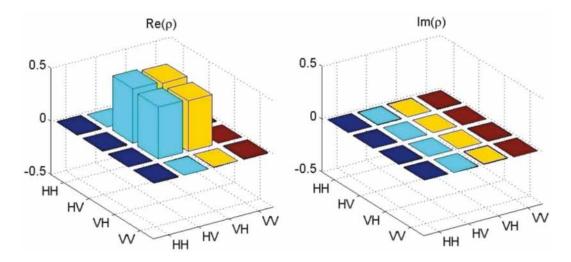


Figure 3. Typical polarization density matrix.

Operating And Storage Conditions

Parameter	Min.	Max.
Operating temperature	15°C	25°C
Operating relative humidity (% RH)	5	60
Storage temperature	-40°C	40°C
Storage relative humidity (% RH)	0	90

Links To White Paper

- 1. Changjia Chen, Eric Y. Zhu, Arash Riazi, Alexey V. Gladyshev, Costantino Corbari, Morten Ibsen, Peter G. Kazansky, and Li Qian, "Compensation-free broadband entangled photon pair sources," Opt. Express 25, 22667–22678 (2017). https://www.osapublishing.org/oe/abstract.cfm?uri=oe-25-19-22667
- 2. Zhu, E. Y., et al. "Multi-party agile quantum key distribution network with a broadband fiber-based entangled source," arXiv preprint arXiv:1506.03896 (2015).
- 3. Changjia Chen, Arash Riazi, Eric Y. Zhu, Alexey V. Gladyshev, Mili Ng, Peter G. Kazansky, and Li Qian. "A Compact All-fiber Polarization Entangled Photon Source Pumped by a Laser Diode," Conference on Lasers and Electro-Optics, 2018, San Jose, CA, USA. https://arxiv.org/abs/1506.03896