# KTP - Potassium Titanyl Phosphate (KTiOPO<sub>4</sub>)

### Introduction

Potassium Titanyl Phosphate (KTiOPO<sub>4</sub> or KTP) is widely used in both commercial and military lasers including laboratory and medical system, range-finders, LiDAR, optical communication and industrial systems.

### CASTECH's KTP is featured by

- · Large nonlinear optical coefficient
- · Wide angular bandwidth and small walk-off angle
- · Broad temperature and spectral bandwidth
- · High electro-optic coefficient and low dielectric constant
- · Large figure of merit
- · Nonhydroscopic, chemically and mechanically stable.

#### **CASTECH offers**

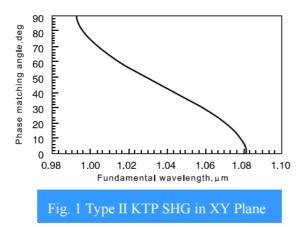
- · Strict quality control
- Large crystal size up to  $20 \times 20 \times 40$  mm<sup>3</sup> and maximum length of 60 mm
- Quick delivery (15 working days for polished only, 20 working days for coated)
- · Unbeatable price and quantity discount
- · Technical support
- · AR-coating, mounting and re-working service

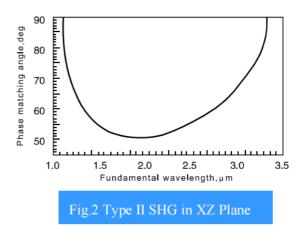
# **Basic Properties**

Table 1. Chemical and Structural Properties

| Crystal Structure                 | Orthorhombic, Space group Pna2 <sub>1</sub> , Point group mm2                                                                                                        |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lattice Parameter                 | a = 6.404 Å, b = 10.616 Å, c = 12.814 Å, Z = 8                                                                                                                       |
| Melting Point                     | About 1172 °C                                                                                                                                                        |
| Mohs Hardness                     | 5                                                                                                                                                                    |
| Density                           | 3.01 g/cm <sup>3</sup>                                                                                                                                               |
| Thermal Conductivity              | 13 W/m/K                                                                                                                                                             |
| Thermal Expansion<br>Coefficients | $\alpha_{\rm x} = 11 \times 10^{-6} / {\rm ^{\circ}C},  \alpha_{\rm y} = 9 \times 10^{-6} / {\rm ^{\circ}C},  \alpha_{\rm z} = 0.6 \times 10^{-6} / {\rm ^{\circ}C}$ |



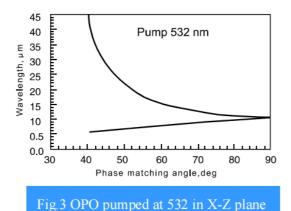

| Transparency Range                                 |                        | 350-4500 nm                                                                                                                                                                                                                                                  |
|----------------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SHG Phase Matchable Range                          |                        | 497-1800 nm (Type II)                                                                                                                                                                                                                                        |
| Therm-optic Coefficient ( $\lambda$ in $\mu$ m)    |                        | $dn_x/dT = 1.1 \times 10^{-5}$ /°C<br>$dn_y/dT = 1.3 \times 10^{-5}$ /°C<br>$dn_z/dT = 1.6 \times 10^{-5}$ /°C                                                                                                                                               |
| Absorption Coefficients                            |                        | <0.1% /cm at 1064 nm, <1% /cm at 532 nm                                                                                                                                                                                                                      |
| For Type II SHG<br>of a Nd:YAG<br>laser at 1064 nm | Temperature Acceptance | 24 °C·cm                                                                                                                                                                                                                                                     |
|                                                    | Spectral Acceptance    | 0.56 nm·cm                                                                                                                                                                                                                                                   |
|                                                    | Angular Acceptance     | 14.2 mrad·cm ( $\Phi$ ); 55.3mrad·cm ( $\theta$ )                                                                                                                                                                                                            |
|                                                    | Walk-off Angle         | 0.55 °                                                                                                                                                                                                                                                       |
| NLO Coefficients                                   |                        | $d_{\rm eff}(II)\approx (d_{24}$ - $d_{15})$ $sin2\Phi$ $sin2\theta$ - $(d_{15}$ $sin^2\Phi+d_{24}$ $cos^2\Phi)$ $sin\theta$                                                                                                                                 |
| Non-vanished NLO Susceptibilities                  |                        | $d_{31} = 6.5 \text{ pm/V}$ $d_{24} = 7.6 \text{ pm/V}$<br>$d_{32} = 5 \text{ pm/V}$ $d_{15} = 6.1 \text{ pm/V}$<br>$d_{33} = 13.7 \text{ pm/V}$                                                                                                             |
| Sellmeier Equations ( $\lambda$ in $\mu$ m)        |                        | $\begin{array}{l} n_x^2 = 3.0065 + 0.03901  /  (\lambda^2 - 0.04251) - 0.01327  \lambda^2 \\ n_y^2 = 3.0333 + 0.04154  /  (\lambda^2 - 0.04547) - 0.01408  \lambda^2 \\ n_z^2 = 3.3134 + 0.05694  /  (\lambda^2 - 0.05658) - 0.01682  \lambda^2 \end{array}$ |
| Electro-optic Coefficients:                        |                        | Low frequency (pm/V) High frequency (pm/V)                                                                                                                                                                                                                   |
| r <sub>13</sub>                                    |                        | 9.5 8.8                                                                                                                                                                                                                                                      |
| r <sub>23</sub>                                    |                        | 15.7 13.8                                                                                                                                                                                                                                                    |
| r <sub>33</sub>                                    |                        | 36.3<br>7.3<br>35.0<br>6.9                                                                                                                                                                                                                                   |
| r <sub>51</sub><br>r <sub>42</sub>                 |                        | 9.3 8.8                                                                                                                                                                                                                                                      |
| Dielectric Constant                                |                        | $\varepsilon_{\text{eff}} = 13$                                                                                                                                                                                                                              |


## Applications for SHG and SFG of Nd: Lasers

KTP is the most commonly used material for frequency doubling of Nd: YAG and other Nd-doped lasers, particularly when the power density is at a low or medium level. Up to now, Nd: lasers that use KTP for intra-cavity and extra-cavity frequency doubling have become a preferred pumping sources for visible dye lasers and tunable Ti:sapphire lasers as well as their amplifiers. They are also used as green sources for many research and industry applications.

- Close to 80% conversion efficiency and 700 mJ green laser were obtained with a 900 mJ injection-seeded Q-switch Nd:YAG lasers by using extra-cavity KTP.
- 8 W green laser was generated from a 15 W LD pumped Nd:YVO<sub>4</sub> with intra-cavity KTP.

KTP is also being used for intracavity mixing of 0.81 μm diode and 1.064 μm Nd:YAG laser to generate blue light and intracavity SHG of Nd:YAG or Nd:YAP lasers at 1.3 μm to produce red light.






## Applications for OPG, OPA and OPO

As an efficient OPO crystal pumped by a Nd:laser and its second harmonics, KTP plays an important role for parametric sources for tunable outputs from visible (600 nm) to mid-IR (4500 nm), as shown in Fig. 3 and Fig. 4.

Generally, KTP's OPOs provide stable and continuous pulse outputs (signal and idler) in fs, with 108 Hz repetition rate and a miniwatt average power level. A KTP's OPO that are pumped by a 1064 nm Nd:YAG laser has generated as high as above 66% efficiency for degenerately converting to 2120 nm.



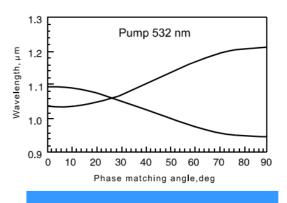



Fig.4 OPO pumped at 532 in X-Y plane

The novel developed application is the non-critical phase matched (NCPM) KTP's OPO/OPA. As shown in Fig.5, for pumping wavelength range from 0.7 µm to 1 µm, the output can cover from 1.04 µm to 1.45 µm (signal) and from 2.15 µm to 3.2 µm (idler). More than 45% conversion efficiency was obtained with narrow output bandwidth and good beam quality.

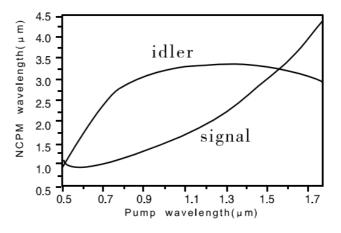



Fig.5 Type II NCPM OPO

### **Applications for E-O Devices**

In addition to unique features, KTP also has promising E-O and dielectric properties that are comparable to LiNbO<sub>3</sub>. These excellent properties make KTP extremely useful to various E-O devices. Table 1 is a comparison of KTP with other E-O modulator materials commonly used:

Phase Amplitude Materials 3 N R K  $N^7r^2/\epsilon$ K  $n^7 r^2 / \epsilon$  $(10-6/^{\circ}C)$ (pm/V) $(10-6/^{\circ}C)$  $(pm/V)^2$ (pm/V) $(pm/V)^2$ KTP 15.42 1.80 35.0 31 6130 27.0 11.7 3650 7410 42.0 LiNbO<sub>3</sub> 27.90 2.20 8.8 82 20.1 3500 KD\*P 48.00 1.47 24.0 9 178 24.0 8.0 178 5.90 1.74 6.4 24 335 1.2 15.0 124 LiIO<sub>3</sub>

Table 3. Electro-Optic Modulator Materials

From Table 1, clearly, KTP is expected to replace LiNbO<sub>3</sub> crystal in the considerable volume application of E-O modulators, when other merits of KTP are combined into account, such as high damage threshold, wide optical bandwidth (>15 GHZ), thermal and mechanical stability, and low loss, etc.

## **Applications for Optical Waveguides**

Based on the ion-exchange process on KTP substrate, low loss optical waveguides developed for KTP have created novel applications in integrated optics. Table 2 gives a comparison of KTP with other optical waveguide materials. Recently, a type II SHG conversion efficiency of 20% /W/cm² was achieved by the balanced phase matching, in which the phase mismatch from one section was balanced against a phase mismatch in the opposite sign from the second. Furthermore, segmented KTP waveguide have been applied to the type I quasi-phase-matchable SHG of a tunable Ti:Sapphire laser in the range of 760-960 mm, and directly doubled diode lasers for the 400-430 nm outputs.

Materials r (pm/V) $\varepsilon_{\rm eff}(\varepsilon_{11}\varepsilon_{33})^{1/2}$  $n^3 r / \epsilon_{\rm eff} (pm/V)$ n KTP 35 1.86 13 17.30 LiNbO<sub>3</sub> 29 2.20 37 8.30 KNbO<sub>3</sub> 25 2.17 30 9.20 **BNN** 56 2.22 86 7.10 BN 56-1340 2.22 119-3400 5.1-0.14 GaAs 1.2 3.60 14 4.00 2.36 BaTiO<sub>3</sub> 28 373 1.00

Table 4. Electro-Optic Waveguide Materials

#### **KTP's Parameters**

Table 5. Specifications

| Dimension Tolerance              | $(W \pm 0.1 \text{ mm}) \times (H \pm 0.1 \text{ mm}) \times (L + 0.5/-0.1 \text{ mm}) \times (L \ge 2.5 \text{ mm})$<br>$(W \pm 0.1 \text{ mm}) \times (H \pm 0.1 \text{ mm}) \times (L + 0.1/-0.1 \text{ mm}) \times (L < 2.5 \text{ mm})$ |  |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Clear Aperture                   | Central 90% of the diameter                                                                                                                                                                                                                  |  |
| Internal Quality                 | No visible scattering paths or centers when inspected by a 50 mW green laser                                                                                                                                                                 |  |
| Surface Quality (Scratch/Dig)    | 10/5 to MIL-PRF-13830B                                                                                                                                                                                                                       |  |
| Flatness                         | ≦λ/8 @633 nm                                                                                                                                                                                                                                 |  |
| Transmitted Wavefront Distortion | ≦λ/8 @633 nm                                                                                                                                                                                                                                 |  |
| Parallelism                      | 20 arc sec                                                                                                                                                                                                                                   |  |
| Perpendicularity                 | ≤ 15 arc min                                                                                                                                                                                                                                 |  |
| Angle Tolerance                  | ≦0.25 °                                                                                                                                                                                                                                      |  |
| Chamfer                          | ≦0.2 mm × 45 °                                                                                                                                                                                                                               |  |
| Chip                             | ≦0.1 mm                                                                                                                                                                                                                                      |  |
| Damage Threshold                 | >1 GW/cm <sup>2</sup> @1064 nm, 10 ns, 10 Hz (AR-coated)<br>>0.3 GW/cm <sup>2</sup> @532 nm, 10 ns, 10 Hz (AR-coated)                                                                                                                        |  |
| Quality Warranty Period          | One year under proper use.                                                                                                                                                                                                                   |  |

# **AR-coatings**

### **CASTECH provides the following AR-coatings:**

- Dual Band AR-coating (DBAR) of KTP for SHG of 1064 nm; low reflectance (R<0.2% @1064 nm and R<0.5% @532 nm)</li>
- High reflectivity coating: HR 1064 nm & HT 532 nm, R>99.8% @1064nm, T>90% @532 nm
- Broad Band AR-coating (BBAR) of KTP for OPO applications.
- High damage threshold (>300 MW/cm<sup>2</sup> at both wavelengths)
- Long durability
- · Other coatings are available upon request.