

1040 VIENNA **AUSTRIA**

LD1625-C120

TECHNICAL DATA

Infrared Laser Diode

pulsed

Features

Lasing Mode Structure: single mode Peak Wavelength: typ. 1625 nm

Optical Ouput Power: 120 mW, pulse mode

Package: 5.6 mm, flat window

Absolute Maximum Ratings ($T_C=25$ °C)

Item	Symbol	Value	Unit
CW Output Power	Po	120	mW
LD Reverse Voltage	V_{r}	2	V
LD Forward Current	I _{op}	1200 *	mA
Operating Case Temperature	T _C	0 +60	°C
Storage Temperature	T _{sta}	-40 +85	°C

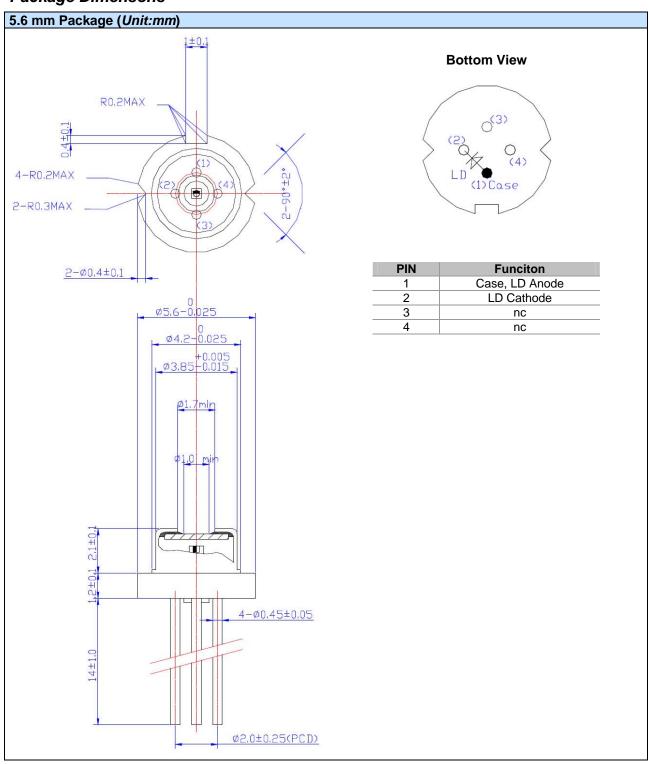
^{*} DC \leq 1%, PW \leq 10 μ s

Specifications (T_C =25°C)

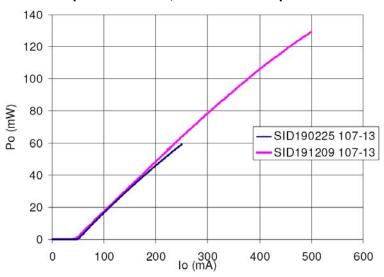
Item	Conditions	Symbol	Min.	Тур.	Max.	Unit		
Optical Specifications								
CW Output Power	I _{op} =500mA, PW=10µs, DC=1%	Po	100	120	-	mW		
Center Wavelength	I _{op} =500mA, PW=10µs, DC=1%	λ_{C}	1600	1625	1650	nm		
Spectral Width *	I _{op} =500mA, PW=10µs, DC=1%	Δλ	-	4	7	nm		
FWHM Beam Divergence	CW, P _O =40mW	Θ∥	ı	17	-	deg.		
		ΘΪ	ı	44	-	deg.		
Electrical Specifications								
Threshold Current	PW=10µs, DC=1%	I_{th}	ı	45	-	mA		
Slope Efficiency	CW, P _O =40mW	η	-	0.3	-	W/A		
Operating Voltage	CW, P _O =40mW	V_{op}	-	1.0	1.9	V		

^{*} RMS, -20 dB

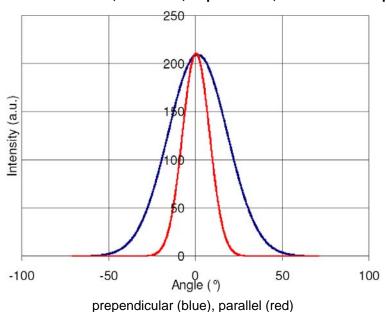
The above specifications are for reference purpose only and subjected to change without prior notice.


ROITHNER LASERTECHNIK GIRDH

WIEDNER HAUPTSTRASSE 76



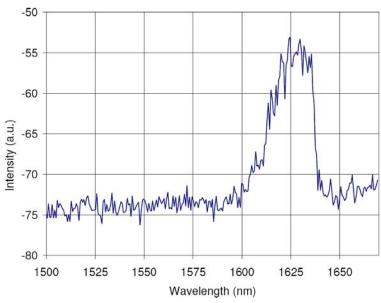
Package Dimensons


Typical Performance Curves

Chip-level LI curve, 25°C fixture temperature

CW mode (blue), pulsed (10 µs PW, 1% DC) mode (magenda)

Chip-level far field curves, CW mode, Pop = 40 mW, 25°C fixture temperature


ROITHNER LASERTECHNIK GIRDH

Chip-level spectral measurement

WIEDNER HAUPTSTRASSE 76

pulsed (10 µs PW, 1% DC) mode, 25°C fixture temperature

Safety of Laser light

Laser Light can damage the human eyes and skin. Do not expose the eye or skin directly to any laser light and/or through optical lens. When handling the LDs, wear appropriate safety glasses to prevent laser light, even any reflections from entering to the eve. Focused laser beam through optical instruments will increase the chance of eye hazard.

The LD emitts invisible light

Cautions

1. Operating methode

- This LD shall change its forward voltage requirement and optical ouput power according to temperature change. Also, the LD will require more operation current to maintain same ouput power as it degrades. [In order to maintain output power, use of APC (Automatic Power Control) is recommended. Which use monitor feedback to adjust the operation current.]
- Confirm that electrical spike current generated by switching on and off does not exceed the maximum operating current level specified herein above as absolute maximum rating. Also, employ appropriat countermeasures to reduce chattering and/or overshooting in the circuit.

2. Static Electricity

Static electricity or electrical surges will reduce and degrade the reliability of the LDs. It is recommended to use a wrist trap or anti-electrostatic glove when handeling the product.

3. Absolute Maximum Rating

Active layer of LDs shall have high current density and generate high electric field during its operation. In order to prevent excessive damage, the LD must be operated strictly below absolute maximum rating.