


# **RLT1500-30G**



**TECHNICAL DATA** 

Sample Nr. 26-1439

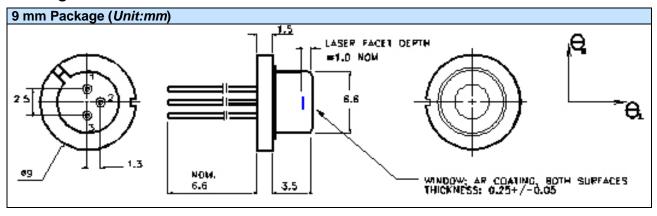
# **Infrared Laser Diode**

#### Features

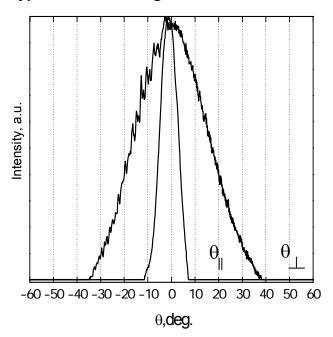
Lasing Mode Structure: Single mode
Peak Wavelength: typ. 1500 nm
Optical Ouput Power: 30 mW

Package: 9 mm

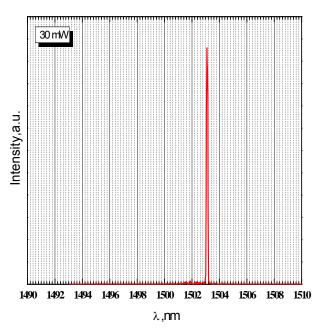



## **Electrical Connection**

| Pin Configuration |      |        |                      |  | Bottom View                                  |
|-------------------|------|--------|----------------------|--|----------------------------------------------|
| 10                | 93   | n-type |                      |  | 2                                            |
|                   | 722  | PIN    | Function             |  |                                              |
| rD 🖳              | → PD | 1      | LD Cathode           |  | $\rightarrow \oplus \mid \oplus \rightarrow$ |
|                   |      | 2      | LD Anode, PD Cathode |  | \ 1 \ 3 \ \                                  |
|                   |      | 3      | PD Anode             |  |                                              |
| O                 | 2    |        |                      |  |                                              |


## Typical Characteristics

| Characteristics           | Symbols              | Values | Unit |
|---------------------------|----------------------|--------|------|
| CW Output Power           | P <sub>op</sub>      | 30     | mW   |
| Operating Current         | I <sub>op</sub>      | 120    | mA   |
| Threshold Current         | I <sub>th</sub>      | 42     | mA   |
| Operating Voltage         | U <sub>op</sub>      | <2     | V    |
| Peak wavelength           | λ                    | 1503   | nm   |
| FWHM Beam Divergence      | $\Theta_{\parallel}$ | 8.5    | deg  |
| PVVHIVI Bealli Divergence | ΘΪ                   | 34     | deg  |
| Monitor Current           | I <sub>m</sub>       | 87     | μA   |
| Monitor Voltage           | U <sub>m</sub>       | <5     | V    |
| Operating Temperature     | T <sub>op</sub>      | 25     | °C   |
| Package                   |                      | 9 mm   |      |


## Package Dimensons



## Typical beam divergence



## **Emitting spectra**



## Safety of Laser light

 Laser Light can damage the human eyes and skin. Do not expose the eye or skin directly to any laser light and/or through optical lens. When handling the LDs, wear appropriate safety glasses to prevent laser light, even any reflections from entering to the eye. Focused laser beam through optical instruments will increase the chance of eye hazard.



#### **Cautions**

#### 1. Operating methode

- This LD shall change its forward voltage requirement and optical ouput power according to temperature change. Also, the LD will require more operation current to maintain same ouput power as it degrades. In order to maintain output power, use of APC (Automatic Power Control) is recommended. Which use monitor feedback to adjust the operation current.
- Confirm that electrical spike current generated by swithing on and off does not exceed the
  maximum operating current level specified herein above as absolute maximum rating. Also,
  employ appropriat countermeasures to reduce chattering and/or overshooting in the circuit.

## 2. Static Electricity

• Static electricity or electrical surges will reduce and degrade the reliability of the LDs. It is recommended to use a wrist trap or anti-electrostatic glove when handling the product.

#### 3. Absolute Maximum Rating

Active layer of LDs shall have high current density and generate high electric field during its
operation. In order to prevent excessive damage, the LD must be operated strictly below
absolute maximum rating.

