

Pump Laser

Modules

Key Features

300mW operating power

Operating temperature up to 75°C

Fiber Bragg Grating (FBG) on PM single mode fiber

Telcordia GR-468-CORE qualified

RoHs 6/6

For more Info

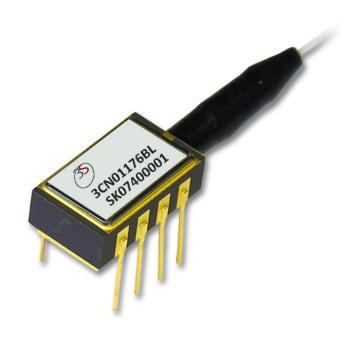
Please contact us at: North America: **514.748.4848**

888.922.1044

Europe & Asia: +33 (0) 1 69 80 58 33 or via e-mail at sales@3spgroup.com

1999 PLU

330mW Kink-Free, FBG Stabilized, 980nm Uncooled Pump Laser Module


75°C; chip is fully qualified exceeding Telcordia recommendations.

The 1999 PLU is a pump product family specifically designed for applications where a compact size and low power consumption are required. Modules feature a mini-DIL package incorporating a new laser chip internally developed for uncooled operation over a wide temperature range from -5° C to

Available kink-free power exceeds 330mW.

The wavelength is "locked" utilizing a Fiber Bragg Grating (FBG) located in a single mode polarization maintaining fiber (PMF) pigtail.

These modules provide excellent stability and very wide dynamic range due to their specific design.

330mW Kink-Free, FBG Stabilized, 980nm Uncooled Pump Laser Module

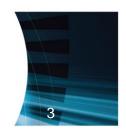
ELECTRO-OPTICAL CHARACTERISTICS

The following parameters are specified BOL for a Tcase = -5°C to 75°C, VBFM= -5V and -50dB max back-reflection unless otherwise stated.

Parameters		Conditions	Symbol	Min	Тур	Max	Unit	
PUMP LASER								
Threshold current	Note 1		I _{th}	-	-	85	mA	
Nominal operating power	er		P _{nom}	100	-	300	mW	
Kink free power	Note 2		P _{kink}	1.1 x P _{nom}	-	-	mW	
·		P _{nom} = 100mW		-	225	280	mA	
		P _{nom} = 150mW		-	305	380		
		P _{nom} = 200mW		-	385	480		
Forward current	Note 3	P _{nom} = 250mW	I _{nom}	-	465	580		
		P _{nom} = 260mW		-	480	600		
		P _{nom} = 270mW		-	495	600		
		$P_{nom} = 300 \text{mW}$		-	550	600		
Forward voltage		@up to 260mW @from 260 to 300mW	V _{nom}	-	1.75 1.75	2.0 2.1	V	
Peak wavelength tolerance		@ T _{case} = T _{FBG} = 25°C 0.1x P _{nom} to P _{nom}	$\Delta\lambda_{p}$		-	±0.5	nm	
Wavelength tuning vs to $(T_{grating} = -5 \text{ to } 75^{\circ}\text{C})$	emperature		$\Delta\lambda_{p}$ / ΔT	-	0.01	0.02	nm/°C	
Spectral width @-3dB		0.1x P _{nom} to P _{nom}	$\Delta\lambda$ FWHM, -3dB	-	-	1.0	nm	
Spectral width @-13dB		0.1x P _{nom} to P _{nom}	$\Delta\lambda$ FWHM, -13dB	-	-	1.0	nm	
Power in band	Note 4	P _{nom}	P _{band}	90	-	-	%	
Optical power stability		Peak to peak, 10Hz-50kHz, 60sec P _{nom}	ΔΡ	-	2	3,5	%	
Power consumption, EOL		P _{nom} = 100mW		-	0,35	0.50		
		P _{nom} = 150mW		-	0,50	0.75		
		$P_{nom} = 200 \text{mW}$		-	0,70	1.00	W	
		P _{nom} = 250mW		-	0,90	1,25		
		P _{nom} = 260mW		-	0,92	1,30		
		$P_{nom} = 270 \text{mW}$		-	0,94	1,35		
		$P_{nom} = 300 \text{mW}$		-	0,96	1,35		
MONITOR DIODE								
Responsivity			I _{BFM} / P	0.5	-	10	μΑ/mW	
Dark current		Vr = 5V	I _{BFM_dark}	-	50	100	nA	
THERMISTOR								
Resistance		25°C	R _{th}	9.5	10	10.5	kΩ	
Constant			В	3600	-	4200	K	

Note 1: I_{th} is the intersection point with the x-axis of a linear fit of the P(I) curve between 15 and 50mW

Note 2: A kink is detected when the local slope dP/dI is below S_{min} or above S_{max} . S_{min} is defined as $0.5xS_{avg}$ and S_{max} is defined as $1.5xS_{avg}$


Note 3: EOL forward current I(EOL)= 1.1x I(BOL)

Note 4: P_{band} is defined as the power within the band $\lambda p \pm 1.5$ nm vs the total output power

330mW Kink-Free, FBG Stabilized, 980nm Uncooled Pump Laser Module

ABSOLUTE MAXIMUM RATINGS

Exposing this device to stresses and conditions above those listed in this section could cause permanent damage and affect reliability. The device is not meant to operate outside the operational limits described in previous section at any length of time.

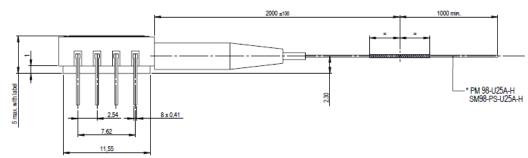
Parameter Conditions	Symbol	Min	Max	Unit
Storage temperature (2000h)	T _{stg}	-40	85	°C
Operating temperature	T _{op}	-5	75	°C
Lead soldering temperature (10s maximum)		-	280	°C
LD forward drive current	I _{f_max}	-	800	mA
LD reverse voltage	V_{r_max}	-	2	V
PD reverse voltage	V_{PD_max}	-	15	V
PD forward current	I _{PD_max}	-	10	mA
ESD* damage	V _{ESD}	-	500	V
Mounting torque		-	150	mN.m
Fiber bend radius		20	-	mm
Axial pull force (1x 1min)		-	5	N

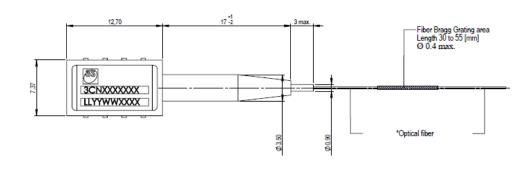
^{*} Human Body model, C= 100pF, R= 1.5Ω

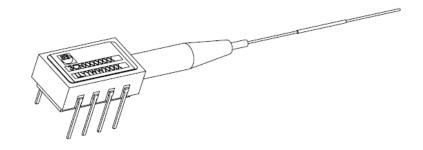

FIBER PIGTAIL CHARACTERISTICS

Parameter	Note	Min	Тур	Max	Unit
Fiber type		SM98-PS-U25A-H or equivalent			
Coating diameter	(except along grating)	230	250	270	μm
FBG recoat diameter		-	-	400	μm
FBG position	Module to center of FBG		2		m
Loose tube buffer diameter		885	-	915	μm
Fiber proof test level		200			kpsi
Grating proof test level		150			kpsi
Pigtail termination	Bare fiber				

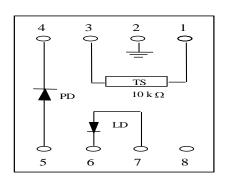
330mW Kink-Free, FBG Stabilized, 980nm Uncooled Pump Laser Module






MECHANICAL **DETAILS**

Dimensions are in mm.



PIN **ASSIGNEMENT**

N°	Description	
1	Thermistor	
2	Case ground	
3	Thermistor	
4	Monitor PD Cathode	
5	Monitor PD Anode	
6	Laser Cathode	
7	Laser Anode	
8	No connect	

330mW Kink-Free, FBG Stabilized, 980nm Uncooled Pump Laser Module

LASER SAFETY INFORMATION

This laser module emits invisible light. Take appropriate precautions to prevent undue exposure to naked eye when module is in operation. This product is classified Class 4 Laser Product according to IEC-60825-1.

HANDLING

This product is sensitive to electrostatic discharge and should not be handled except at a static free workstation. Take precautions to prevent ESD; use wrist straps, grounded work surfaces and recognized anti-static techniques when handling the 1999PLU PUMP LASER MODULES. Handle the module by its package ONLY; never hold it by its pigtail. Care should be taken to avoid supply transient currents and voltages. Drive voltage above the maximum specified in absolute maximum rating section may cause permanent damage to the device.

ORDERING INFORMATION

1999 PLU PUMP PRODUCT FAMILY.

	λ _p = 974.5nm, T= 25°C	$\lambda_p = 976.0$ nm, T= 25°C
Nominal Power (mW)	Part Number	Part Number
100	3CN 01176AA	3CN 01177AA
150	3CN 01176AL	3CN 01177AL
200	3CN 01176BA	3CN 01177BA
250	3CN 01176BL	3CN 01177BL
260	3CN 01176BN	3CN 01177BN
270	3CN 01176BQ	3CN 01177BQ
300	3CN 01176CA	3CN 01177CA

Revised November 2013

Please note: information in this document is typical and must be specifically confirmed in writing by your supplier before it becomes applicable to any order or contract. Information is subject to change without notice.

©2011 3S PHOTONICS S.A.S

ORDERING **INFO**

Please contact your Sales Manager. 3SPGroup can also develop custom products to meet a wide range of technical requirements.

3SPGroup

North America: 514.748.4848

888.922.1044

Europe and Asia: +33 (0)1 69 80 58 33 www.3spgroup.com • sales@3spgroup.com