

EOLP-1396-20 Series

1310nm SFP+ single-Mode Transceiver, With Diagnostic Monitoring 10G BASE-LW/LR 0.6~10Gb/s CPRI/OBSAI Duplex SFP+ Transceiver, RoHS 6 Compliant

Features

- ◆ Operating data rate up to 11.3Gbps
- ◆ 1310nm DFB-LD Transmitter
- ◆ Distance up to 20km
- ◆ Single 3.3V Power supply and TTL Logic Interface
- Duplex LC Connector Interface
- ♦ Hot Pluggable
- ◆ Power Dissipation < 1.0 W</p>
- Compliant with MSA SFP+ Specification SFF-8431
- ◆ Compliant with IEEE 802.3ae 10GBASE-LR/LW
- ♦ Operating Case Temperature

Standard: 0°C~+70°C

Industrial: -40°C~+85°C

Applications

- ◆ 10GBASE-LR at 10.31Gbps
- ◆ 10GBASE-LW at 9.95Gbps
- OBSAI rates 6.144 Gb/s, 3.072 Gb/s,
 1.536 Gb/s, 0.768Gb/s
- CPRI rates 10.138Gb/s ,9.830
 Gb/s,7.373Gb/s, 6.144 Gb/s, 4.915
 Gb/s, 2.458 Gb/s, 1.229 Gb/s,
 0.614Gb/s
- Other optical links

Ordering information

Part No.	Data Rate	Laser	Fiber Type	Distance	Optical Interface	Temp.	DDMI
EOLP-1396-20*note1	0.614Gbps	1310nm	SMF	20km	LC	Standard	YES
	to 11.3Gbps	DFB					
EOLD 1306 30 L	0.614Gbps	1310nm	SMF	20km	1.0	Industrial	YES
EOLP-1396-20-I	to 11.3Gbps	DFB	SIVIE	ZUKIII	LC	mausmai	TES

Note1: Standard version.

^{*}The product image only for reference purpose.

Regulatory Compliance*Note2

Product Certificate	Certificate Number	Applicable Standard
		EN 60950-1:2006+A11+A1+A12+A2
TUV	R50135086	EN 60825-1:2014
		EN 60825-2:2004+A1+A2
1.11	F247227	UL 60950-1
UL	E317337	CSA C22.2 No. 60950-1-07
EMC CE	VE E030E06E 0001	EN 55022:2010
EMC CE	AE 50285865 0001	EN 55024:2010
FCC	WTF14F0514417E	47 CFR PART 15 OCT., 2013
FDA	1	CDRH 1040.10
ROHS	1	2011/65/EU

Note2: The above certificate number updated to June 2014, because some certificate will be updated every year, such as FDA and ROHS. For the latest certification information, please check with Eoptolink.

Product Description

The EOLP-1396-20 series single mode transceiver is small form factor pluggable module for serial optical data communications such as IEEE 802.3ae 10GBASE-LR/LW. It is with the SFP+ 20-pin connector to allow hot plug capability.

This module is designed for single mode fiber and operates at a nominal wavelength of 1310 nm. The transmitter section uses a 1310nm multiple quantum well DFB laser and is a class 1 laser compliant according to International Safety Standard IEC-60825.

The receiver section uses an integrated InGaAs detector preamplifier (IDP) mounted in an optical header and a limiting post-amplifier IC.

Absolute Maximum Ratings*note3

Parameter	Symbol	Min.	Max.	Unit
Storage Temperature	Ts	-40	+85	°C
Supply Voltage	V _{CC}	-0.5	3.6	V
Input Voltage	Vin	-0.5	Vcc	V
Output Current	lo	-	50	mA

Note3: Exceeding any one of these values may destroy the device permanently.

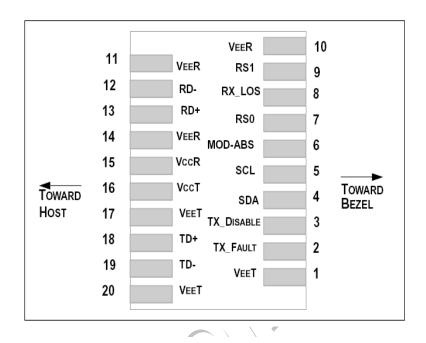
Recommended Operating Conditions

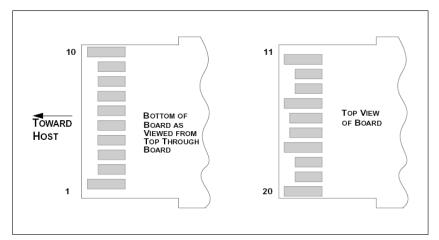
Parameter	Symbol		Min.	Typical	Max.	Unit
Operating Case Temperature	Tc	EOLP-1396-20	0		+70	°C
Operating Case Temperature		EOLP-1396-20-I	-40		+85	O
Power Supply Voltage		Vcc	3.15	3.3	3.45	V
Power Supply Current	Icc				300	mA
Surge Current		ISurge			+30	mA

Baud Rate		0.6		11.3	Gbps
-----------	--	-----	--	------	------

Performance Specifications – Electrical

Parameter	Symbol	Min.	Тур.	Max	Unit	Notes
		Trans	smitter		•	
CML Inputs(Differential)	Vin	150		1200	mVpp	AC coupled inputs
Input AC Common Mode Voltage		0		25	mV	RMS
Input Impedance (Differential)	Zin	85	100	115	ohm	Rin > 100 kohms @ DC
Differential Input S-parameter	S _{DD} 11	-	-	-10	dB	
Differential to Common Mode Conversion	S _{CD} 11	-	-	-10	dB	
Tx_DISABLE Input Voltage – High		2		3.45	V	
Tx_DISABLE Input Voltage – Low		0		0.8	V	
Tx_FAULT Output Voltage – High		2		Vcc+0.3	V	lo = 400μA; Host Vcc
Tx_FAULT Output Voltage – Low		0		0.5	V	Io = -4.0mA
		Red	eiver			
CML Outputs (Differential)	Vout	350		700	mVpp	AC coupled outputs
Output AC Common Mode Voltage		0		15	mV	RMS
Output Impedance (Differential)	Zout	90	100	110	ohm	
Differential Output S-parameter	S _D 22	-	-	-10	dB	
Rx_LOS Output Voltage – High		2		Vcc+0.3	V	lo = 400µA; Host Vcc
Rx_LOS Output Voltage – Low		0		0.8	V	lo = -4.0mA
MOD_DEF (0:2)	VoH	2.5			V	With Serial ID
WOD_DEI (0.2)	VoL	0		0.5	V	vviui Genai iD


Performance Specifications – Optical


Parameter	Symbol	Min.	Typical	Max.	Unit			
9µm Core Diameter SMF			20		Km			
Data Rate		0.6		11.3	Gbps			
Transmitter								
Centre Wavelength	λc	1270	1310	1355	nm			
Spectral Width (-20dB)	Δλ			1	nm			
Side Mode Suppression Ratio	SMSR	30			dB			
Average Output Power*note4	Pout	-3		+1	dBm			
Extinction Ratio	ER	3.5			dB			
Average Power of OFF Transmitter	Poff			-30	dBm			
Transmitter Dispersion Penalty	TDP			2	dB			
TX Disable Assert Time	t_off	-	-	10	us			
TX_DISABLE Negate Time	t_on	-	-	1	ms			
TX_BISABLE time to start reset	t_reset	10	-	-	us			
Time to initialize, include	t init	-	-	300	ms			
reset of TX_FAULT	t_init				1115			
TX_FAULT from fault to assertion	t_fault	-	-	100	us			
Total Jitter	TJ	-	-	0.28	UI(p-p)			
Data Dependant Jitter	DDJ	-	-	0.1	UI(p-p)			
Uncorrelated Jitter	UJ	-	-	0.023	RMS			
	Receiver							
Centre Wavelength	λ	1260		1565	nm			
Sensitivity*note5	P _{min}			-14.4	dBm			
Receiver Overload	P _{max}	0.5			dBm			
Optical Return Loss	ORL			-12	dB			
LOS De-Assert	LOSD			-16	dBm			
LOS Assert	LOSA	-28			dBm			

Note4: Output is coupled into a 9/125 μ SMF. Note5: Minimum average optical power measured at the BER less than 1E-12, back to back. The measure pattern is PRBS 2^{31} -1.

SFP+ Transceiver Electrical Pad Layout

Pin Function Definitions

Pin Num.	Name	FUNCTION	Plug Seq.	Notes
1	VeeT	Transmitter Ground	1	Note 5
2	TX Fault	Transmitter Fault Indication	3	Note 1
3	TX Disable	Transmitter Disable	3	Note 2, Module disables on high or open
4	SDA	Module Definition 2	3	2-wire Serial Interface Data Line.
5	SCL	Module Definition 1	3	2-wire Serial Interface Clock.
6	MOD-ABS	Module Definition 0	3	Note 3

7	RS0	RX Rate Select (LVTTL).	3	No Function Implement
8	LOS	Loss of Signal	3	Note 4
9	RS1	TX Rate Select (LVTTL).	1	No Function Implement
10	VeeR	Receiver Ground	1	Note 5
11	VeeR	Receiver Ground	1	Note 5
12	RD-	Inv. Received Data Out	3	Note 6
13	RD+	Received Data Out	3	Note 7
14	VeeR	Receiver Ground	1	Note 5
15	VccR	Receiver Power	2	3.3V ± 5%, Note 7
16	VccT	Transmitter Power	2	3.3V ± 5%, Note 7
17	VeeT	Transmitter Ground	1	Note 5
18	TD+	Transmit Data In	3	Note 8
19	TD-	Inv. Transmit Data In	3	Note 8
20	VeeT	Transmitter Ground	1	Note 5

Notes:

- 1) TX Fault is an open collector/drain output, which should be pulled up with a $4.7K 10K\Omega$ resistor on the host board. Pull up voltage between 2.0V and VccT/R+0.3V. When high, output indicates a laser fault of some kind. Low indicates normal operation. In the low state, the output will be pulled to < 0.8V.
- 2) TX disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a $4.7K-10~K\Omega$ resistor. Its states are:

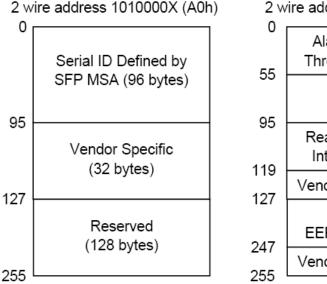
Low (0 - 0.8V): Transmitter on

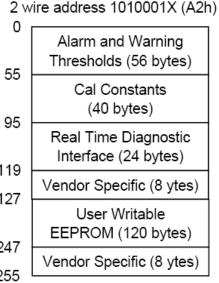
(>0.8, < 2.0V): Undefined

High (2.0 – 3.465V): Transmitter Disabled

Open: Transmitter Disabled

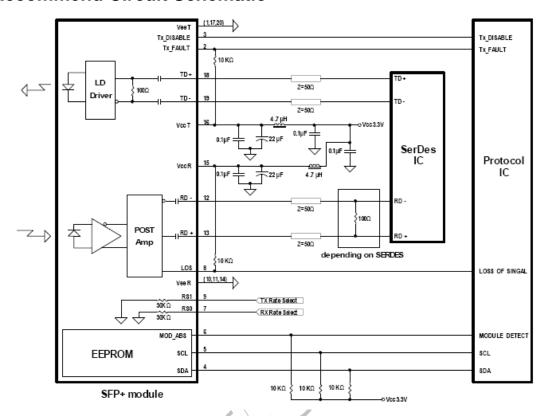
- 3) Module Absent, connected to VeeT or VeeR in the module.
- 4) LOS (Loss of Signal) is an open collector/drain output, which should be pulled up with a $4.7K 10K\Omega$ resistor. Pull up voltage between 2.0V and VccT/R+0.3V. When high, this output indicates the received optical power is below the worst-case receiver sensitivity (as defined by the standard in use). Low indicates normal operation. In the low state, the output will be pulled to < 0.8V.
- 5) The module signal ground contacts, VeeR and VeeT, should be isolated from the module case.
- 6) RD-/+: These are the differential receiver outputs. They are AC coupled 100Ω differential lines which should be terminated with 100Ω (differential) at the user SERDES. The AC coupling is done inside the module and is thus not required on the host board.
- 7) VccR and VccT are the receiver and transmitter power supplies. They are defined as 3.3V ±5%


at the SFP+ connector pin. Maximum supply current is 300mA. Inductors with DC resistance of less than 1 ohm should be used in order to maintain the required voltage at the SFP+ input pin with 3.3V supply voltage. When the recommended supply-filtering network is used, hot plugging of the SFP+ transceiver module will result in an inrush current of no more than 30mA greater than the steady state value. VccR and VccT may be internally connected within the SFP+ transceiver module.


8) TD-/+: These are the differential transmitter inputs. They are AC-coupled, differential lines with 100Ω differential termination inside the module. The AC coupling is done inside the module and is thus not required on the host board.

EEPROM

The serial interface uses the 2-wire serial CMOS EEPROM protocol defined for the ATMEL AT24C02/04 family of components. When the serial protocol is activated, the host generates the serial clock signal (SCL). The positive edge clocks data into those segments of the EEPROM that are not written protected within the SFP+ transceiver. The negative edge clocks data from the SFP+ transceiver. The serial data signal (SDA) is bi-directional for serial data transfer. The host uses SDA in conjunction with SCL to mark the start and end of serial protocol activation. The memories are organized as a series of 8-bit data words that can be addressed individually or sequentially.


The Module provides diagnostic information about the present operating conditions. The transceiver generates this diagnostic data by digitization of internal analog signals. Calibration and alarm/warning threshold data is written during device manufacture. Received power monitoring, transmitted power monitoring, bias current monitoring, supply voltage monitoring and temperature monitoring all are implemented. If the module is defined as external calibrated, the diagnostic data are raw A/D values and must be converted to real world units using calibration constants stored in EEPROM locations 56 – 95 at wire serial bus address A2h. The digital diagnostic memory map specific data field define as following .For detail EEPROM information, please refer to the related document of SFF 8472 Rev 10.2.



Recommend Circuit Schematic

Mechanical Specifications

*This 2D drawing only for reference, please check with Eoptolink before ordering.

Eye Safety

This single-mode transceiver is a Class 1 laser product. It complies with IEC-60825 and FDA 21 CFR 1040.10 and 1040.11. The transceiver must be operated within the specified temperature and voltage limits. The optical ports of the module shall be terminated with an optical connector or with a dust plug.

Obtaining Document

You can visit our website:

http://www.eoptolink.com

Or contact Eoptolink Technology Inc., Ltd. Listed at the end of the documentation to get the latest document.

Revision History

Revision	Initiated	Reviewed	Approved	Revision History	Release Date
V1.b	Tim.Liang	Kelly.Cao		Released.	2008-9-17
V1.c	Cathy	Kelly		Add the suitable application.	2010-1-5
V1.d	Cathy	\ ,		Updated output power value.	2010-11-3
V1.e	Cathy			Update temp. range.	2011-2-22
V1.f	Kelly			Update case temp. symbol.	2011-6-9
V2.0	Alex/Townie	Kelly.Cao		Update spelling mistake	Aug 10, 2011
V2.a	Townie	Kelly		Add power dissipation and industrial product.	Aug 23, 2011
V2.b	Kelly			Add TDP.	Aug 25, 2011
V2.c	Kelly			Update Pout range.	Nov 18, 2011
V2.d	Angela	Kelly		Add notes and update pin definition notes	July 1, 2013
V2.e	Angela	Kelly/Fing		Update the max data rate, temp, power consumption, LOSA/LOSD and regulatory compliance. Add the CPRI/OBSAI application.	Oct 13,2014
V2.f	Angela	Vina/Fing/Jp/ Eason/Jason		Update the max data rate and the tolerances of 2D drawing.	April 23,2015
V2.g	Elaine	Kelly/Eason/ Chao.Wang		Correct a slip of the pen, Update the regulatory compliance, the 2D drawing, the address and the contact information.	Sep 18, 2017
V2.h	Angela	Kelly/Fing/JP/ Eason/William/	Phlio	Update the CPRI data rates and RS0/RS1 Pin function	March 22, 2018

SFP+ Series

Chao.Wang	definition notes.	
	Update the picture and 2D	
	drawing	

Notice:

Eoptolink reserves the right to make changes to or discontinue any optical link product or service identified in this publication, without notice, in order to improve design and/or performance. Applications that are described herein for any of the optical link products are for illustrative purposes only. Eoptolink makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Contact:

Add: No.127 West Wulian Street, Gongxing Town, Shuangliu district, Chengdu City, Sichuan, China.

Tel: (+86) 028-67087999

Fax: (+86) 28-67087979-8010

Postal: 610213

E-mail:sales@eoptolink.com

http://www.eoptolink.com