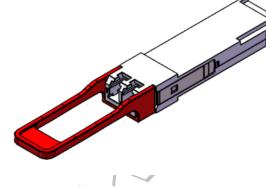


EOLQ-1640G-40-X Series

Single-Mode 40GBASE-ER4 QSFP+ Transceiver RoHS Compliant

Features

- Supports 40Gbps
- Single 3.3V Power Supply
- Commercial Power dissipation <3.5W and Industrial Power dissipation <4.5W
- Up to 40km over SMF
- Operating case temperature range of
 - Standard: 0°C to 70°C
 - Industrial: -40°C to 85°C
- Four 10G DFB base CWDM channels on transmitter side
- Duplex LC receptacles
- I2C interface with integrated Digital Diagnostic
 Monitoring
- Safety Certification: TUV/UL/FDA^{*Note1}
- RoHS Compliant


Ordering Information

Part No.	Data Rate	Fiber	Distance *(note2)	Interface	Temp.	DDMI
EOLQ-1640G-40	40Gbps	SMF	40km	LC	0°C~+70°C	Yes
EOLQ-1640G-40-I	40Gbps	SMF	40km	LC	-40°C to 85°C	Yes

Note1: For the latest certification information, please check with Eoptolink.

Note2: Over SMF

*The product image only for reference purpose.

Applications

- 40GBASE-ER4 Ethernet
- Infiniband QDR and DDR
- Client-side 40G Telecom connections

Product Description

Eoptolink's EOLQ-1640G-40-X QSFP+ transceiver module is designed for 40Gigabit Ethernet links over 40Km single mode fiber. It is compliant with IEEE 802.3ba 40GBASE-ER4. Digital diagnostics functions are available via an I2C interface, as specified by the QSFP+ MSA.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit
Storage Temperature	Ts	-40	+85	°C
Supply Voltage	Vcc	-0.5	3.6	V
Operating Relative Humidity	RH	5	85	%

*Exceeding any one of these values may destroy the device immediately.

Recommended Operating Conditions

Parameter	Symbol		Min.	Typical	Max.	Unit
Operating Case Temperature		EOLQ-1640G-40	0	Ŷ	+70	°C
		EOLQ-1640G-40-I	-40		+85	°C
Power Supply Voltage		Vcc	3.135	3.3	3.465	V
Commercial Power Dissipation		PD			3.5	W
Industrial Power Dissipation		PD			4.5	W
Link Distance with G.652		D			40	km

Performance Specifications - Electrical

Devenueter	Cumhal	N/1:	T	Max	11	Nataa		
Parameter	Symbol	Min.	Тур.	Max	Unit	Notes		
Supply voltage		3.1		3.47	V			
Supply Current	Icc			1.44	Α			
Transmit turn-on time				2000	ms	Note3		
Transmitter								
Differential Input Voltage Swing	Vin,pp	190		700	mV _{p-p}			
Input Impedance (Differential)	Zin	90	100	110	ohms	Rin > 100 kohms @ DC		
		Receiv	ver					
Differential output Voltage Swing	Vout,pp	300		850	mV _{p-p}			
AC common mode output voltage				7.5	mV	RMS		
Output Impedance (Differential)	Zout	90	100	110	ohms			
Output Transition Time		28			ps	20%~80%		

Note3: From power-on and end of any fault conditions.

Optical Characteristics

40GBASE-ER4 Operation

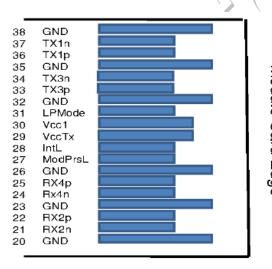
Parameter	Symbol	Min.	Typical	Max.	Unit
		nsmitter			
Signaling Speed per Lane	BRAVE		10.3125	11.2	Gbps
Side Mode Launch Power	SMSR	30			dB
Total average launch power	Рт			10.5	dBm
Lane_0 Center Wavelength	λco	1264.5	1271	1277.5	nm
Lane_1 Center Wavelength	λ _{C1}	1284.5	1291	1297.5	nm
Lane_2 Center Wavelength	λc2	1304.5	1311	1317.5	nm
Lane_3 Center Wavelength	λсз	1324.5	1331	1337.5	nm
Average Launch Power per Lane*(Note4)	Peach	-2.7		4.5	dBm
Average launch power of OFF transmitter per lane				-30	dBm
Relative Intensity Noise	Rin			-128	dB/Hz
Optical modulation amplitude* ^(Note5)	Poma	0.3	0	5.0	dBm
Optical Return Loss Tolerance				20	dB
Differnce in Launch Power between any two lanes	P _{tx} ,diff			4.7	dB
Transmitter Reflectance	RT	7		-12	dB
Extinction Ratio*(Note6)	ER	5.5			dB
Transmitter eye mask definition{X1, X2, X3, Y1, Y2, Y3}* ^(Not6)		{0.25, 0.4	,0.45,0.25,	0.28, 0.4}	
	Re	eceiver			
Signaling Speed per Lane	BRAVE		10.3125		Gbps
Data Rate Variation		-100		+100	ppm
Damage threshold*(Not7)	Rdam	3.8			dBm
Lane_0 Center Wavelength	λ_{C0}	1264.5	1271	1277.5	nm
Lane_1 Center Wavelength	λ _{C1}	1284.5	1291	1297.5	nm
Lane_2 Center Wavelength	λ_{C2}	1304.5	1311	1317.5	nm
Lane_3 Center Wavelength	λc3	1324.5	1331	1337.5	nm
Average Receive Power per Lane	Rpow	-21.2		-4.5	dBm
Receiver Sensitivity in OMA per Lane* ^(Note8)	Pmin			-19	dBm
Stressed Receiver Sensitivity (OMA) per Lane *(Note9)	RX _{SRS}			-16.8	dBm
Conditions of stressed receiver	sensitivity test	:		·	<u> </u>

Vertical Eye Closure Penalty *(Note10)	VECP		2.2		dB
Stressed J2 Jitter *(Note10)	J2		0.3		UI
Stressed J9 Jitter *(Note10)	J9		0.47		UI
LOS Assert	LOSA	35			dBm
LOS De-Assert	LOSD			-23	dBm
LOS Hysteresis		0.5			dB

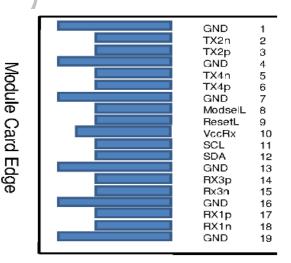
Note4: Average launch power, each lane (min) is informative and not the principal indicator of signal strength. A transmitter with launch power below this value cannot be compliant; however, a value above this does not ensure compliance.

Note5: Even if the TDP < 0.8dB, the OMA (min) must exceed this value.

Note6: Filtered, measured with a PRBS 2³¹-1 test pattern @10.3Gbps.


Note7: The receiver shall be able to tolerate, without damage, continuous exposure to an optical input signal having this average power level.

Note8: Minimum average optical power measured at BER less than 1E-12, with a 2³¹-1 PRBS.


Note9: Measured with conformance test signal at TP3 for BER=1E-12.

Note10: Vertical eye closure penalty, stressed eye J2 Jitter, stressed eye J9 Jitter are test conditions for measuring stressed receiver sensitivity. They are not characteristics of the receiver.

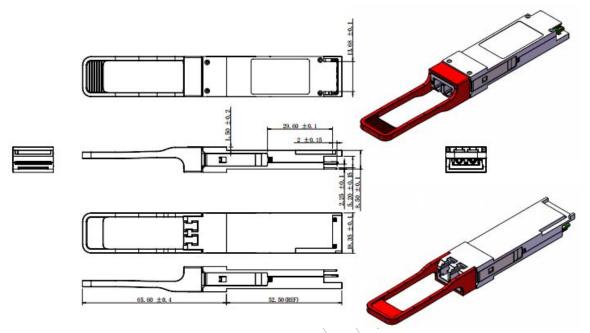
QSFP+ Transceiver Electrical Pad Layout

Top Side Viewed From Top

Bottom Side Viewed From Bottom

Pin Arrangement and Definition

Pin	Logic	Symbol	Description	Plug Sequence	Notes
1		GND	Ground	1	1
2	CML-I	Tx2n	Transmitter Inverted Data Input	3	
3	CML-I	Tx2p	Transmitter Non-Inverted Data Input	3	
4		GND	Ground	1	1


				00110111	in iai y
5	CML-I	Tx4n	Transmitter Inverted Data Input	3	
6	CML-I	Tx4p	Transmitter Non-Inverted Data Input	3	
7		GND	Ground	1	1
8	LVTTL-I	ModSelL	Module Select	3	
9	LVTTL-I	ResetL	Module Reset	3	
10		VccRx	+3.3V Power Supply Receiver	2	2
11	LVCMOS- I/O	SCL	2-wire serial interface clock	3	
12	LVCMOS- I/O	SDA	2-wire serial interface data	3	
13		GND	Ground	1	1
14	CML-O	Rx3p	Receiver Non-Inverted Data Output	3	
15	CML-O	Rx3n	Receiver Inverted Data Output	3	
16		GND	Ground	1	1
17	CML-O	Rx1p	Receiver Non-Inverted Data Output	3	
18	CML-O	Rx1n	Receiver Inverted Data Output	3	
19		GND	Ground	1	1
20		GND	Ground	1	1
21	CML-O	Rx2n	Receiver Inverted Data Output	3	
22	CML-O	Rx2p	Receiver Non-Inverted Data Output	3	
23		GND	Ground	1	1
24	CML-O	Rx4n	Receiver Inverted Data Output	3	
25	CML-O	Rx4p	Receiver Non-Inverted Data Output	3	
26		GND	Ground	1	1
27	LVTTL-O	ModPrsL	Module Present	3	
28	LVTTL-O	IntL	Interrupt	3	
29		VccTx	+3.3V Power supply transmitter	2	2
30		Vcc1	+3.3V Power supply	2	2
31	LVTTL-I	LPMode	Low Power Mode	3	
32		GND	Ground	1	1
33	CML-I	Тх3р	Transmitter Non-Inverted Data Input	3	
34	CML-I	Tx3n	Transmitter Inverted Data Input	3	
35		GND	Ground	1	1
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input	3	
37	CML-I	Tx1n	Transmitter Inverted Data Input	3	
38		GND	Ground	1	1
1.0	ID is the sumalial t		oupply (power) common for the OSED		

1: GND is the symbol for signal and supply (power) common for the QSFP+ module. All are common within the QSFP+ module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal-common ground plane.

2: Vcc Rx, Vcc1 and Vcc Tx are the receiver and transmitter power supplies and shall be applied concurrently. Requirements defined for the host side of the Host Edge Card Connector are listed in Table 6. Recommended host board power supply filtering is shown in Figures 3 and 4. Vcc Rx Vcc1 and Vcc Tx may be internally connected within the QSFP+ Module in any combination. The connector pins are each rated for a maximum current of 500mA.

Mechanical Specifications

*This 2D drawing only for reference, please check with Eoptolink before ordering.

Obtaining Document

You can visit our website: http://www.eoptolink.com

Or contact Eoptolink Technology Inc., Ltd. Listed at the end of the documentation to get the latest documents.

Revision History

Revision	Initiated	Reviewed	Approved	Revision History	Release Date
V1.a	Eliss	Erik,Tracy		Preliminary.	Mar 9, 2017
				Update optical	
V1.b	Eliss	Erik,Tracy,Kelly,		parameters and	July 26, 2018
1.5		Elaine		mechanical	ouly 20, 2010
	*			specifications	
				Add the industrial	
V1.c	Angola	Erik/Eliss/Tracy/		temperature range.	August 2, 2018
V1.C	V1.c Angela	Kelly		Updated the power	August 2, 2016
				dissipation.	
				Updated the	
V1.d	Elaine	Peter/Eliss/Kelly		product image and	Oct 9, 2018
vi.u	Liaine			the mechanical	0019,2010
				specifications.	
		Erik/		Updated the power	
V1.e	Tyler/	Jason/JP/Kelly/		dissipation, LOS	December 13,
v I.e	Angela	Yiwei.Chen		Assert parameters	2018
		nwei.Cheft		and regulatory	

	compliance	
	information.	

Notice:

Eoptolink reserves the right to make changes or discontinue any optical link product or service identified in this publication, without notice, in order to improve design and/or performance. Applications that are described herein for any of the optical link products are for illustrative purposes only. Eoptolink makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Contact:

Add: No.127 West Wulian Street, Gongxing Town, Shuangliu District, Chengdu, 610213, P.R.

CHINA

Tel: (+86) 028-67087999

Fax: (+86) 028-67087979

Postal: 610213

E-mail:sales@eoptolink.com

http://www.eoptolink.com