

EOLS-BI1312-M Series

EOLS-BI1512-M Series

Multi-Mode 1.25Gbps GBE Simplex SC/LC Single-Fiber SFP Transceiver RoHS6 Compliant

Features

- Support 1.25Gbps data links
- A type: 1310nm FP Tx/1550nmRx
 B type: 1550nm FP Tx/1310nmRx
- 1000m with 50/125µm MMF (800Mhz*km)
- 550m with 62.5/125µm MMF (500Mhz*km)
- ٠
- Single 3.3V Power supply and TTL Logic Interface
- Hot-Pluggable SFP Footprint Simplex SC/LC
 Connector Interface
- Class 1 FDA and IEC60825-1 laser safety compliant
- ◆ Operating Case Temperature
 Standard: 0°C~+70°C

Industrial:-40℃~+85℃

- Compliant with SFP MSA
- Compliant with SFF-8472

Applications

- Gigabit Ethernet Switches and Routers
- Fiber Channel Switch Infrastructure
- CPRI rate: 1.228Gbps

Part No.	Data Rate	Wavelength	Distance *(note2)	Interface	Temp.	DDMI
EOLS-BI1312-M*(note1)	1.25Gbps	1310nm	0.55~1km	SC	Standard	NO
EOLS-BI1512-M*(note1)	1.25Gbps	1550nm	0.55~1km	SC	Standard	NO
EOLS-BI1312-M-I	1.25Gbps	1310nm	0.55~1km	SC	Industrial	NO
EOLS-BI1512-M-I	1.25Gbps	1550nm	0.55~1km	SC	Industrial	NO

Ordering information

EOLS-BI1312-M-D	1.25Gbps	1310nm	0.55~1km	SC	Standard	YES
EOLS-BI1512-M-D	1.25Gbps	1550nm	0.55~1km	SC	Standard	YES
EOLS-BI1312-M-DI	1.25Gbps	1310nm	0.55~1km	SC	Industrial	YES
EOLS-BI1512-M-DI	1.25Gbps	1550nm	0.55~1km	SC	Industrial	YES
EOLS-BI1312-M-L*(note1)	1.25Gbps	1310nm	0.55~1km	LC	Standard	NO
EOLS-BI1512-M-L*(note1)	1.25Gbps	1550nm	0.55~1km	LC	Standard	NO
EOLS-BI1312-M-IL	1.25Gbps	1310nm	0.55~1km	LC	Industrial	NO
EOLS-BI1512-M-IL	1.25Gbps	1550nm	0.55~1km	LC	Industrial	NO
EOLS-BI1312-M-DL	1.25Gbps	1310nm	0.55~1km	LC	Standard	YES
EOLS-BI1512-M-DL	1.25Gbps	1550nm	0.55~1km	LC	Standard	YES
EOLS-BI1312-M-DIL	1.25Gbps	1310nm	0.55~1km	LC	Industrial	YES
EOLS-BI1512-M-DIL	1.25Gbps	1550nm	0.55~1km	LC	Industrial	YES

Note1: Standard version

Note2: 550m with 62.5/125um MMF (500Mhz.km).

1000 m with 50/125um MMF (800Mhz.km)

*The product image only for reference purpose.

Regulatory Compliance*

Product Certificate	Certificate Number	Applicable Standard
		EN 60950-1:2006+A11+A1+A12+A2
TUV	R50135086	EN 60825-1:2014
		EN 60825-2:2004+A1+A2
	E317337	UL 60950-1
UL	E317337	CSA C22.2 No. 60950-1-07
		EN 55032:2012
EMC CE	AE 50384190 0001	EN 55032:2015
	AE 50384 190 0001	EN 55024:2010
		EN 55024:2010+A1
FCC	WTF14F0514417E	47 CFR PART 15 OCT., 2013
FDA	/	CDRH 1040.10
ROHS	/	2011/65/EU

*The above certificate number updated to June 2018, because some certificate will be updated every year, such as FDA and ROHS. For the latest certification information, please check with Eoptolink.

Functional Diagram

Product Description

The EOLS-BI1312-M/ EOLS-BI1512-M series is high performance multi-rate module for Gigabit Ethernet fiber communications by using 1310nm/1550nm transmitter and 1550nm/1310nm receiver. It is with the SFP 20-pin connector to allow hot plug capability.

The transmitter section uses a multiple quantum well A type/ B type laser and is a class 1 laser compliant according to International Safety Standard IEC 60825. The receiver section uses an integrated B type/ A type detector preamplifier (IDP) mounted in an optical header and a limiting post-amplifier IC.

The EOLS-BI1312-MD/ EOLS-BI1512-MD series are designed to be compliant with SFF-8472 SFP Multi-source Agreement (MSA).

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit
Storage Temperature	Ts	-40	+85	°C
Supply Voltage	Vcc	-0.5	3.6	V
Operating Relative Humidity		-	95	%

*Exceeding any one of these values may destroy the device immediately.

Recommended Operating Conditions

Parar	neter		Symbol	Min.	Typical	Max.	Unit
Operatir	ng Case	т	EOLS-1X12-M	0		+70	°C
Tempe	erature	Tc	EOLS-1X12-M-I	-40		+85	C
Power Sup	ply Voltage	Vcc		3.15	3.3	3.45	V
Power Sup	ply Current					300	mA
Date Rate GBE					1.25		Gbps
Dale Rale	FC	Ì			1.063		Gbps

Performance Specifications - Electrical

Barar	notor	Symbol	Min.	Tun	Мах	Unit	Notos	
Parameter		Symbol	IVIIN.	Тур.	IVIAX	Unit	Notes	
	Transmitter							
LVPI Inputs(Dif		Vin	400		2000	mVpp	AC coupled inputs*(note5)	
Input Imp (Differe		Zin	85	100	115	ohms	Rin > 100 kohms @ DC	
	Disable		2		Vcc	v		
Tx_Dis	Enable		0		0.8	V		
	Fault		2		Vcc+0.3	v		
Tx_FAULT	Normal		0		0.5	V		
			Rece	eiver				
LVPECL (Differe	•	Vout	370		2000	mVpp	AC coupled outputs*(note5)	
Output Im (Differe		Zout	85	100	115	ohms		
By LOS	LOS		2		Vcc+0.3	V		
Rx_LOS	Normal		0		0.8	V		

MOD DEF(0:2)	VoH	2.5		V	With Serial ID
MOD_DEF (0:2)	VoL	0	0.5	V	

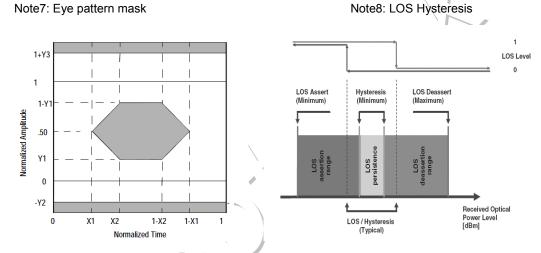
Optical and Electrical Characteristics

(EOLS-BI1312-M, 1310nm FP and PIN, 550m)

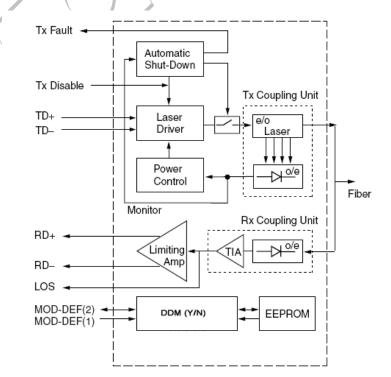
Parameter	Symbol	Min.	Typical	Max.	Unit		
50µm Core Diameter MMF(800Mhz*km) L			1000	m		
62.5 Core Diameter MMF(500Mhz*km)	L			550	m		
Data Rate			1.063/1.25		Gbps		
	Transmitte	r					
Centre Wavelength	λc	1260	1310	1360	nm		
Spectral Width (RMS)	Δλ			4	nm		
Average Output Power*(note3)	Pout	-9.5		-3	dBm		
Extinction Ratio*(note4)	ER	6			dB		
Rise/Fall Time(20%~80%)	tr/tf			0.26	ns		
Total Jitter	TJ			56.5	ps		
Output Optical Eye*(note4)	Comp	Compatible with IEEE 802.3ah-2004*(note7)					
TX_Disable Assert Time	t_off			10	us		
Pout@TX Disable Asserted	Pout			-45	dBm		
	Receiver	*					
Centre Wavelength	λ	1500	1550	1580	nm		
Receiver Sensitivity*(note6) GBE	Pmin			-21	dBm		
FC				-22	dBm		
Receiver Overload	Pmax	-3			dBm		
LOS De-Assert	LOSD			-23	dBm		
LOS Assert	LOSA	-35			dBm		
LOS Hysteresis*(note8)		0.5			dB		

(EOLS-BI1512-M, 1550nm FP and PIN, 550m)

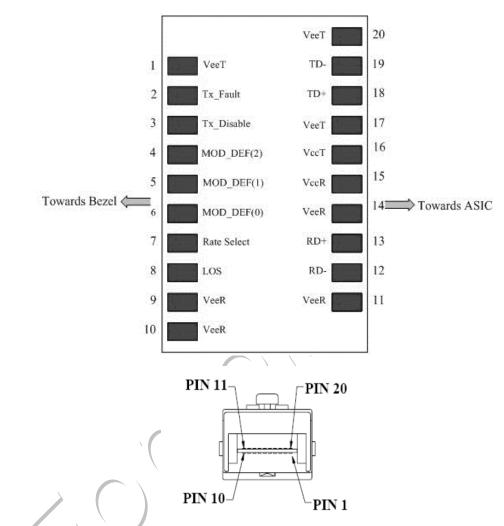
Parameter	Symbol	Min.	Typical	Max.	Unit
50µm Core Diameter MMF(800Mhz*km)	L			1000	m
62.5 Core Diameter MMF(500Mhz*km)	L			550	m
Data Rate			1.25		Gbps
	Transmitter				
Centre Wavelength	λc	1500	1550	1580	nm
Spectral Width (RMS)	Δλ			4	nm
Average Output Power*(note3)	Pout	-9.5		-3	dBm
Extinction Ratio*(note4)	ER	6			dB
Rise/Fall Time(20%~80%)	tr/tf			0.26	ns
Total Jitter	TJ			56.5	ps
Output Optical Eye*(note4)	Compa	atible with	IEEE 802.3al	า-2004* ^{(not}	e7)
TX_Disable Assert Time	t_off			10	us
Pout@TX Disable Asserted	Pout			-45	dBm


Receiver									
Centre Wavelength		λ	1260	1310	1360	nm			
G		Pmin			-21	dBm			
Receiver Sensitivity*(note6)	FC	PIIIII			-22	dBm			
Receiver Overload		Pmax	-3			dBm			
LOS De-Assert	LOS De-Assert				-23	dBm			
LOS Assert		LOSA	-35			dBm			
LOS Hysteresis*(note8)			0.5			dB			

Note3: Output is coupled into a 50/125µm Multi-mode fiber.


Note4: Filtered, measured with a PRBS 27-1 test pattern @1.25Gbps

Note5: LVPECL logic, internally AC coupled.


Note6: Measured at all data rates specified in Data Rate table with ER=9 Db, 27-1 PRBS data pattern, BER <1E-12.

Functional Description of Transceiver

SFP Transceiver Electrical Pad Layout

Pin Function Definitions

Pin Num.	Name	FUNCTION	Plug Seq.	Notes
1	VeeT	Transmitter Ground	1	5)
2	TX Fault	Transmitter Fault Indication	3	1)
3	TX Disable	Transmitter Disable	3	2), Module disables on high or open
4	MOD-DEF2	Module Definition 2	3	3), Data line for Serial ID.
5	MOD-DEF1	Module Definition 1	3	3), Clock line for Serial ID.
6	MOD-DEF0	Module Definition 0	3	3), Grounded within the module.
7	Rate Select	Not Connect	3	Function not available
8	LOS	Loss of Signal	3	4)
9	VeeR	Receiver Ground	1	5)
10	VeeR	Receiver Ground	1	5)

11	VeeR	Receiver Ground	1	5)
12	RD-	Inv. Received Data Out	3	6)
13	RD+	Received Data Out	3	7)
14	VeeR	Receiver Ground	1	5)
15	VccR	Receiver Power	2	3.3 ± 5%, 7)
16	VccT	Transmitter Power	2	3.3 ± 5%, 7)
17	VeeT	Transmitter Ground	1	5)
18	TD+	Transmit Data In	3	8)
19	TD-	Inv. Transmit Data In	3	8)
20	VeeT	Transmitter Ground	1	5)

Notes:

1) TX Fault is an open collector/drain output, which should be pulled up with a $4.7K - 10K\Omega$ resistor on the host board. Pull up voltage between 2.0V and VccT, R+0.3V. When high, output indicates a laser fault of some kind. Low indicates normal operation. In the low state, the output will be pulled to < 0.8V.

2) TX disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a 4.7 – 10 K Ω resistor. Its states are:

Low (0 – 0.8V): Transmitter on

(>0.8, < 2.0V): Undefined

High (2.0 – 3.465V): Transmitter Disabled

Open: Transmitter Disabled

3) Mod-Def 0,1,2. These are the module definition pins. They should be pulled up with a 4.7K – 10Kωresistor on the host board. The pull-up voltage shall be VccT or VccR (see Section IV for further details). Mod-Def 0 is grounded by the module to indicate that the module is present Mod-Def 1 is the clock line of two wire serial interface for serial ID Mod-Def 2 is the data line of two wire serial interface for serial ID

4) LOS (Loss of Signal) is an open collector/drain output, which should be pulled up with a $4.7K - 10K\Omega$ resistor. Pull up voltage between 2.0V and VccT, R+0.3V. When high, this output indicates the received optical power is below the worst-case receiver sensitivity (as defined by the standard in use). Low indicates normal operation. In the low state, the output will be pulled to < 0.8V.

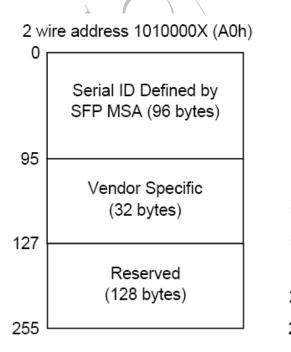
5) VeeR and VeeT may be internally connected within the SFP module.

6) RD-/+: These are the differential receiver outputs. They are AC coupled 100Ω differential lines which should be terminated with 100Ω (differential) at the user SERDES. The AC coupling is done inside the module and is thus not required on the host board. The voltage swing on these lines will be between 370 and 2000 Mv differential (185 –1000 Mv single ended) when properly terminated.

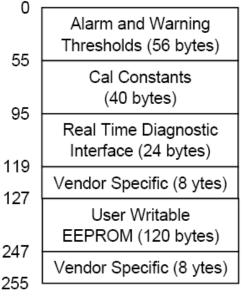
7) VccR and VccT are the receiver and transmitter power supplies. They are defined as 3.3V ±5% at the SFP connector pin. Maximum supply current is 300Ma. Recommended host board power supply filtering is shown below. Inductors with DC resistance of less than 1 ohm should be used in order to maintain the required voltage at the SFP input pin with 3.3V supply voltage. When the recommended supply-filtering network is used, hot plugging of the SFP transceiver module will

Eoptolink Technology Inc., Ltd.

eoptolink°

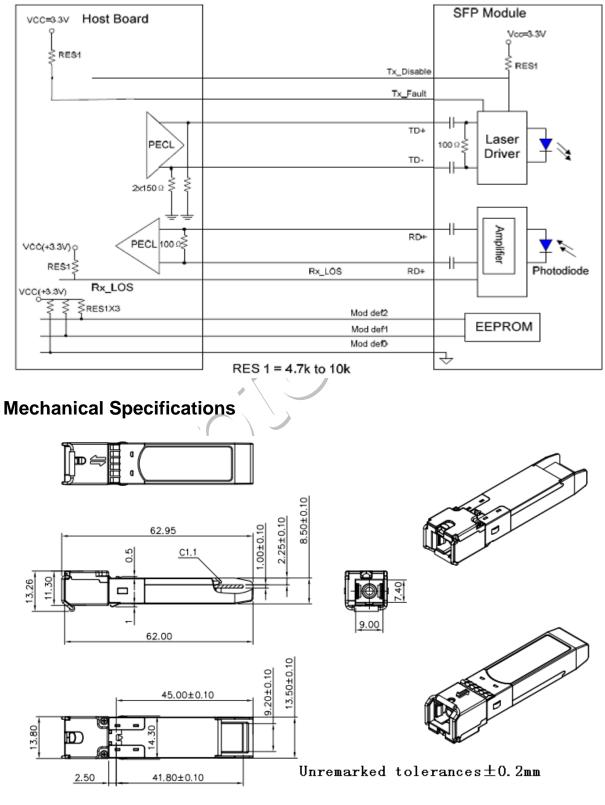

result in an inrush current of no more than 30Ma greater than the steady state value. VccR and VccT may be internally connected within the SFP transceiver module.

8) TD-/+: These are the differential transmitter inputs. They are AC-coupled, differential lines with 100Ω differential termination inside the module. The AC coupling is done inside the module and is thus not required on the host board. The inputs will accept differential swings of 500 - 2400 Mv (250 - 1200Mv single-ended), though it is recommended that values between 500 and 1200 Mv differential (250 - 600Mv single-ended) be used for best EMI performance.

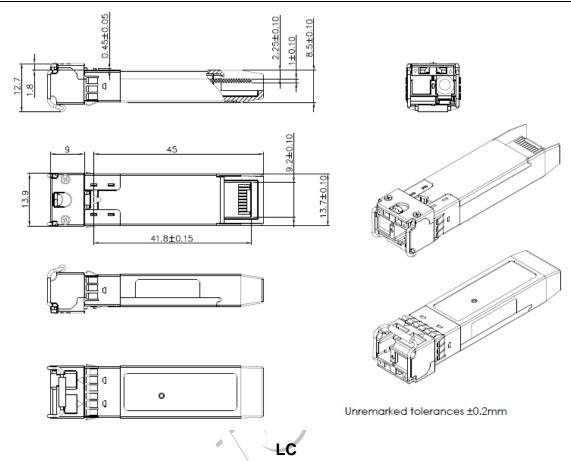

EEPROM

The serial interface uses the 2-wire serial CMOS EEPROM protocol defined for the ATMEL AT24C02/04 family of components. When the serial protocol is activated, the host generates the serial clock signal (SCL). The positive edge clocks data into those segments of the EEPROM that are not write protected within the SFP transceiver. The negative edge clocks data from the SFP transceiver. The serial data signal (SDA) is bi-directional for serial data transfer. The host uses SDA in conjunction with SCL to mark the start and end of serial protocol activation. The memories are organized as a series of 8-bit data words that can be addressed individually or sequentially.

The Module provides diagnostic information about the present operating conditions. The transceiver generates this diagnostic data by digitization of internal analog signals. Calibration and alarm/warning threshold data is written during device manufacture. Received power monitoring, transmitted power monitoring, bias current monitoring, supply voltage monitoring and temperature monitoring all are implemented. The diagnostic data are raw A/D values and must be converted to real world units using calibration constants stored in EEPROM locations 56 – 95 at wire serial bus address A2h. The digital diagnostic memory map specific data field define as following .For detail EEPROM information, please refer to the related document of SFF 8472 Rev 9.3.

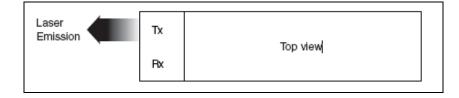


2 wire address 1010001X (A2h)



Recommend Circuit Schematic

SC



*This 2D drawing only for reference, please check with Eoptolink before ordering

Laser Emission Data

Wavelength	1310nm
Total output power (as defined by FDA: 7 mm aperture at 20 cm distance)	<0.195Mw
Total output power (as defined by IEC: 7 mm aperture at 10 cm distance)	<15.6Mw
Beam divergence	12.5°
Wavelength	1550nm
Total output power (as defined by FDA: 7 mm aperture at 20 cm distance)	<0.79Mw
Total output power (as defined by IEC: 7 mm aperture at 10 cm distance)	<10Mw
Beam divergence	12.5°

Laser Emission

Obtaining Document

You can visit our website: http://www.eoptolink.com

Or contact Eoptolink Technology Inc., Ltd. Listed at the end of the documentation to get the latest documents.

Revision History

Revision	Initiate	Review	Approve	Subject	Last printed
V2.a	Cathy	Kelly		Released.	Mar 27, 2010
V3.a	Phlio			Update Recommend Circuit	Aug 10, 2011
V3.b	Phlio			Update Link Budget	Aug 22, 2011
V3.c	Kelly			Update photo.	Nov 4, 2011
V3.d	Kelly			Update distance.	Jun 15, 2012
V3.e	Arvin	Lyn,Jason,Walt		Update distance	June 3, 2013
V3.f	Angela	Lyn/Jason/Walt/ Vina	Phlio	Update distance, regulatory compliance, LOSA and mechanical spec.	Feb 06,2015
V3.g	Angela	Arvin	Phlio	Add CPRI application.	Feb 27,2015
V3.h	Angela	KellyAaron/Vina		Update the regulatory compliance, eye pattern mask and 2D drawing,	Oct 9,2015
V3.i	Angela	Kelly		Updated the regulatory compliance and contact.	August 20, 2018

Notice:

Eoptolink reserves the right to make changes to or discontinue any optical link product or service identified in this publication, without notice, in order to improve design and/or performance. Applications that are described herein for any of the optical link products are for illustrative purposes only. Eoptolink makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Contact:

Add: No.127 West Wulian Street, Gongxing Town, Shuangliu district, Chengdu City, Sichuan, China.
Tel: (+86) 028-67087999
Fax: (+86) 28-67087979-8010
Postal: 610213
E-mail:sales@eoptolink.com
http://www.eoptolink.com