

DC to 44GHz / 12dB Gain / 21dBm Psat Medium Power Amplifier

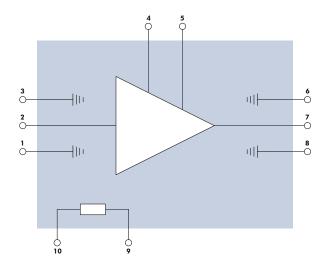
DATA SHEET VWA 5000052 AA

General Description

The **VWA5000052AA** is a distributed amplifier designed on a 0.15µm pHEMT process.

The device is capable of more than +21 dBm of output power at saturation regime, up to 40 GHz, and more than +17 dBm of output power at 1 dB of gain compression, up to 34 GHz. It provides more than 12 dB of linear gain from DC to 44 GHz with a positive slope through 40 GHz. This device can provide up to 11 dB gain up through 50 GHz when operating with $V_D = 6V$, with an excellent group delay. The Design has been optimized to provide high efficiency. The supply current is as low as 170 mA when operating with $V_D = +6V$.

Features


- Wideband Distributed amplifier pHEMT GaAs MMIC
- Wideband: DC to 44GHz.
- Flat group delay
- 50ΩRF Single ended input and output
- DC coupled In, DC coupled Out
- P_{1dB} :+17dBm DC to 34GHz
- $P_{SAT} > +21 dBm DC to 40 GHz$
- Small signal gain : >12dB from 2 to 40GHz
- Power supply: 170mA @ +6V
- Chip size: 2.29 x 1.28 x 0.1mm

Applications

- Wide Band Amplifier
- Radar / ECM / ECCM
- Test and measurement

- Telecommunication format NRZ, PAM4, 56GBPS
- Broadband / datalink communication

Pins Assignement & Functional Block Diagram

Pad N°
2
4
5
7
9
10

Electrical Specifications (Test Under Probes)

Test conditions unless otherwise noted:

• Tamb.= +25°C

• $I_D = 170 \text{mA}$

• $V_D = +6V$

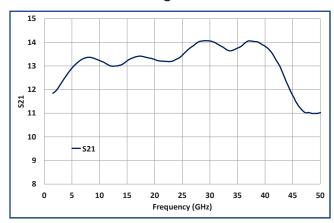
• $V_{G2} = +2.5V$

Symbol	Parameter	Min	Тур	Max	Unit
F	Frequency range	DC		40	Ghz
NF	Noise figure			4	dB
G	Small signal gain		12.5		dB
ΔG	Average gain positive slope		0.0375		dB
S11	Input return loss		-10	-7	dB
S22	Output return loss		-18		dB
P1dB	Output P1dB from DC to 34GHz	1 <i>7</i>	18		dBm
P _{SAT}	Saturated output power		21		dBm
I _D	Drain current		1 <i>7</i> 0		mA

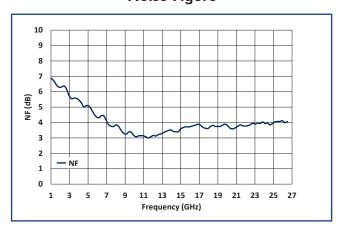
Environmental parameters				
Symbol	Parameter	Values	Unit	
Тор	Operating temperature range	-40/+85	°C	
Tstg	Storage temperature range	-55/+85	°C	

Absolute Maximum Ratings				
Symbol	Parameter	Min	Max	Unit
V_D	Drain bias voltage		9	V
V_{G2}	Gate control input access for second stage	-1	V _D /2	V
Pin	RF input power		18	dBm
Pcw	Continuous power disspation		2	W
T process	Temperature process max 20 seconds		325	°C

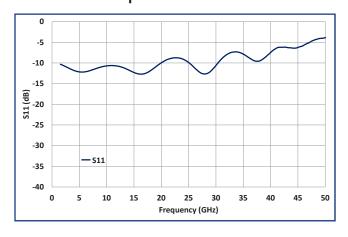
Operation of this device above any of these parameters may cause permanent damage.

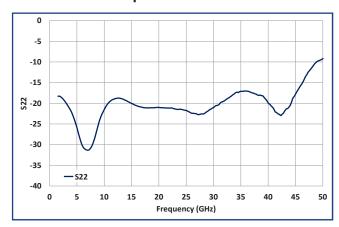

Typical Performances (Test Under Probes)

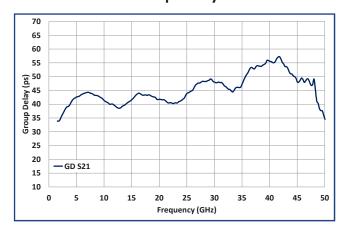
Test conditions unless otherwise noted:

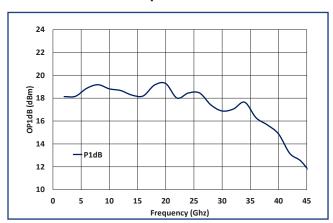

- Tamb.= +25°C
- $V_D = +6V$

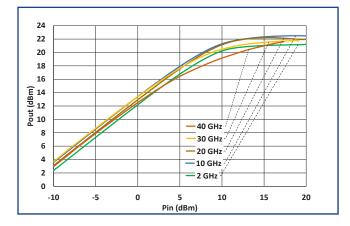
- $I_D = 170 \text{mA}$
- $V_{G2} = +2.5V$

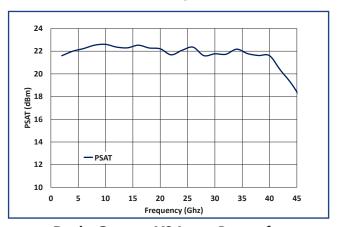

Small Signal Gain

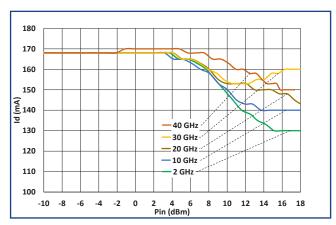

Noise Figure


Input Return Loss


Output Return Loss


Group Delay


Output P1dB


Output Power VS Input Power for various Frequency

Saturated Output Power

Drain Current VS Input Power for various Frequency

Biasing procedure

Switch on

- 1. Set V_D to +6V
- 2. Set V_{G2} to +2.5V
- 3. Turn RF Input ON

Switch off

- 1. Turn RF Input OFF
- 2. Decrease $V_{\mathbb{G}^2}$ to 0V
- 3. Decrease V_D to OV

Die Layout

X = 2291 μm
Y = 1298 μm

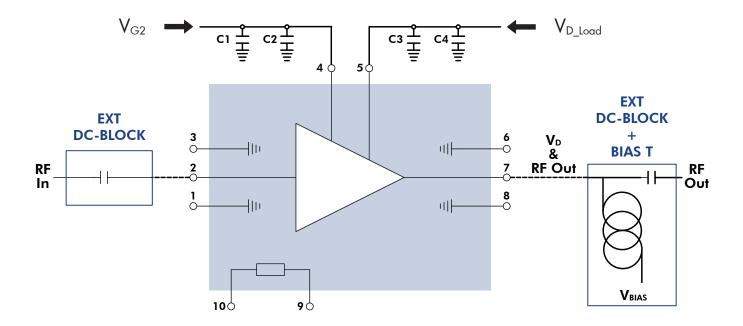
X = 2291 μm
Y = 1298 μm

X = 2291 μm
Y = 1298 μm

Pinout and Bonding Pad Coordinates

Die Pin Out				
Pad	Χ (μm)	Υ (μm)	Size (μm x μm)	Function
1	89	90	75x75	GND
2	89	215	75x75	RF In
3	91	340	75x75	GND
4	158	1201	100x100	$V_{\rm G2}$
5	336	1201	100x100	V_{D_load}
6	2198	994	75x75	GND
7	2198	869	75x75	RF Out
8	2198	744	75x75	GND
9	905	131	100x100	$V_{\rm G1_A}$
10	415	131	100x100	V_{G1_B}

Die thickness = $100\mu m$


Die bottom must be connected to ground (RF and DC)

Access Description

Pin Number	Name	Description	Electrical interface	
2	RF In	RF Amplifier input, this access is AC coupled and internally matched to 50Ω .		
4	$V_{\rm G2}$	Gate control input access for second stage distributed amplifier structure. Apply +2.5V for nominal biasing conditions.	V₀ & RF Out	
5	V_{D_load}	Drain termination load decoupling access. For lower frequency applications, this access can be connected to a MIM 100pF or 1000pF capacitor, with a low inductance connection.	RF In	
7	RF Out	RF Amplifier output, this access is DC coupled and internally matched to 50Ω . It is also used to feed the drain current (I_D), by using a wide bandwidth external Bias-T structure.	□ GND □ GND □	
9	$V_{\text{G1_A}}$	Gate control input access for first stage distributed amplifier structure. Unused for nominal biasing conditions.	V G1_A V G1_B	
10	V _{G1_B}	Gate control output access for first stage distributed amplifier structure. Unused for nominal biasing conditions.	O	
Die Bottom	GND	Die must be connected to RF and DC Ground	GND	

Application Circuit

- C1, C4: 1µF
- C2, C3: 1nF capcitors are MIM type and must be placer as close as possible to the die access.

Ordering Information

Product Code	Definition
VWA 5000052AA	DC To 44GHz / 12dB Gain / 21dBm P _{SAT}

Associated Material

Material	Status
Packaged die	Contact factory
Die Evaluation Board (die EVB)	Contact factory
Packaged die Evaluation Board (packaged die EVB)	Contact factory
Mechanical files (DXF)	Contact factory
Measurents files (S2P)	Contact factory

Product Compliance Information

Solderability:

Use only AuSn (80/20) solder and limit exposure to temperature above 300 °C TO 3 - 4 minutes, maximum

ESD Sensitivy Rating:

Test : Human Body Model (HBM) Standard : JEDEC Standard JESD22-A114

CAUTION! ESD-Sensitive device

RoHS-Compliance:

This part is compliant with EU 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment).

This product also has the following attributes:

- Lead Free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C15H12Br402) Free
- PFOS Free
- SVHC Free

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations, and information about Vectrawave:

Vectrawave SA 5, rue Louis de Broglie 22 300 Lannion France www.vectrawave.com

Email sales: contact_sales@vectrawave.com

Tel sales:+33 (0)2 57 63 00 20

Represented by