

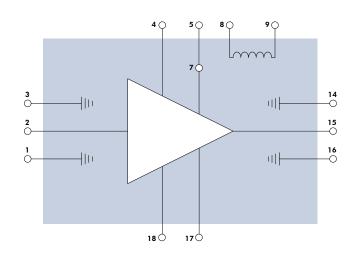
DC to 44GHz / 12dB Gain/ 21dBm Psat Medium Power amplifier

DATA SHEET

VWA 5000054 AA

General Description

The **VWA5000054AA** is a distributed amplifier designed on a 0.15µm pHEMT process.


The device includes an internal biasing circuit which can be used to feed directly the drain current, as an alternative to bias the drain from the RF Output access. Depending on the desired low cut off frequency, external components can be added to ensure operations started from 30KHz to 2GHz through up to 40GHz. The device includes also an embedded output signal detector and an embedded input gate biasing circuit which can be used to reduce the power consumption in many linear receiving amplifier chains. It is capable of more than +21dBm of output power at saturation regime, up to 40GHz. And more than +17dBm of output power at 1dB of gain compression, up to 34GHz. It provides more than 12dB of linear gain from DC to 44GHz with a positive slope of +0.0375dB/GHz, up to 40GHz. This device can provide up to 10dB gain up to 50GHz with an excellent group delay. Optimized biasing configurations are proposed depending on the input power level pattern.

Features

- Wideband Distributed amplifier pHEMT GaAs MMIC
- Wide band: DC to 46GHz.
- Internal biasing access.
- Flat group delay.
- 50ΩRF Single ended input and output
- DC coupled In, DC coupled Out
- $P_{1dB} > +17dBm DC$ to 34GHz
- High output P_{SAT}>+21dBm DC to 40GHz
- Small signal gain : >12dB from 2GHz to 40GHz
- Nominal Power Supply: 168mA @ +6V
- Chip size: 2.29 x 1.575 x 0.1mm

Applications

- Up to 50GBps, E/O Modulator driver (3V/75mA)
- Radar / ECM / ECCM
- Receiver chain amplification
- Wide band MPA
- Radar / ECM / ECCM
- Test and measurement
- Broadband / datalink communication

Pins Assignement & Functional Block Diagram

Symbol	Pad N°
RF In	2
V_{G2}	4
V_{D_LOAD}	5
V _{DL In}	7
V _{SELF} Out	8
V _{SELF} In	9
RF Out	15
V _{G1_A}	17
V _{G1_B}	18
GND	1/3/14/16

Electrical Specifications (Test Under Probes)

- K Connector housing using Internal Biasing Circuit.
- Tamb.= +25°C
- V_D = +6V
- I_D = 162mA

- $V_{G1_A} = 0V$
- $V_{G2} = +2.5V$

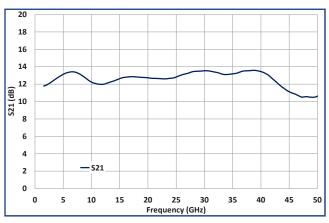
Symbol	Parameter		Тур	Max	Unit
F	Frequency range	DC		40	Ghz
G	Small signal gain		12.5		dB
ΔG	Small signal gain flatness		+/-1		dB
S11	Input return loss		-10	-7	dB
S22	Output return loss		-12		dB
P1dB	Output P1dB	17	18		dBm
P _{SAT}	Saturated output power		21		dBm
I _D	Drain current		162		mA
V _D	Drain supply voltage		6		V

Environmental parameters

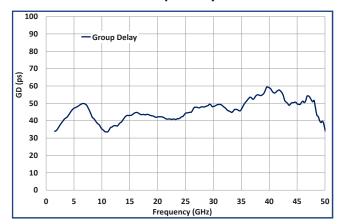
Symbol	Parameter	Values	Unit
Тор	Operating temperature range	-40/+85	°C
Tstg	Storage temperature range	-55/+85	°C

Absolute Maximum Ratings

Symbol	Parameter	Min	Мах	Unit
VD	Drain bias voltage		9	V
Pin	RF input power		18	dBm
Pcw	Continuous power disspation(@85°)		2.5	W
T process	Temperature process max 20 seconds		325	°C

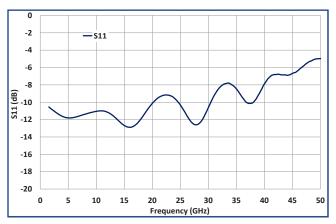

Operation of this device above any of these parameters may cause permanent damage.

Typical Performances (Test Under Probes)

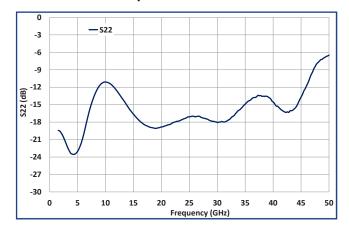

Test conditions unless otherwise noted:

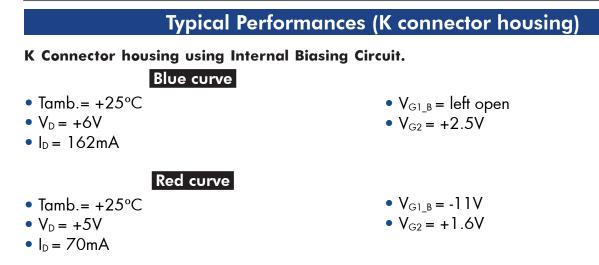
- Tamb.= +25°C
- $V_D = +6V$
- I_D = 162mA

- V_{G1_B} = left open
- $V_{G2} = +2.5V$

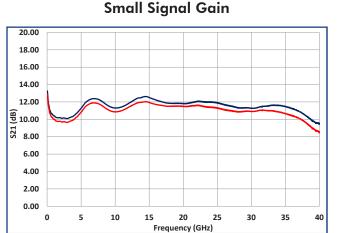


Small Signal Gain

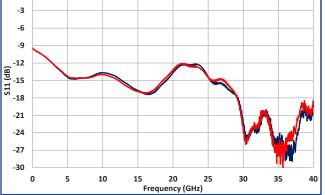


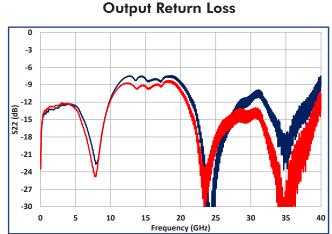

Group Delay

Input Return Loss

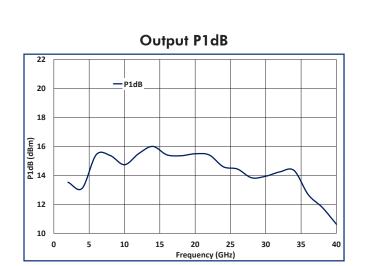


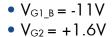
Output Return Loss

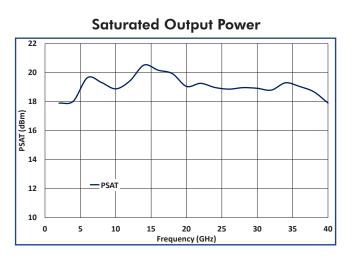




Note : This configuration with external inductor help to ensure applications from 30KHz to up to 40GHz. For application from 2GHz to 40GHz, an external capacitor can be used instead of external inductors.




0


K Connector housing using Internal Biasing Circuit.

- Tamb.= +25°C
- $V_D = +6V$
- $I_D = 162 \text{mA}$

- V_{G1_B} = left open
- $V_{G2} = +2.5V$
- **Output P1dB** 24 24 22 22 20 20 (m 8 18 18 P1dB (dBm) 19 19 TAS⁴ 16 14 14 - P1dB - PSAT 12 12 10 10 0 5 10 20 25 30 35 40 0 5 10 20 25 30 35 40 15 15 Frequency (Ghz) Frequency (Ghz)
- K Connector housing using Internal Biasing Circuit.
- Tamb.= +25°C
- $V_D = +5V$
- $I_{D} = 70 \text{mA}$

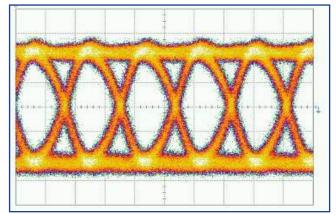
Saturated Output Power

VectraWave

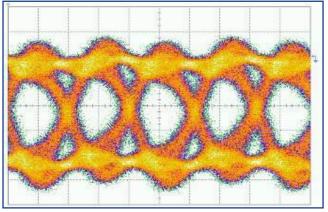
Telecoms Measurement (K connector housing)

K Connector housing using Internal Biasing Circuit.

- V_D = +5V
- $I_{D} = 70 \text{mA}$

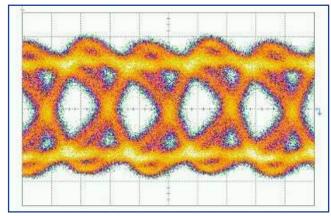

- V_{G1} = left open
- $V_{G2} = +1V$

Measure on Agilent 86100C, without precision time base and with 50GHz electronic head.


28GBps Input Eye diagram

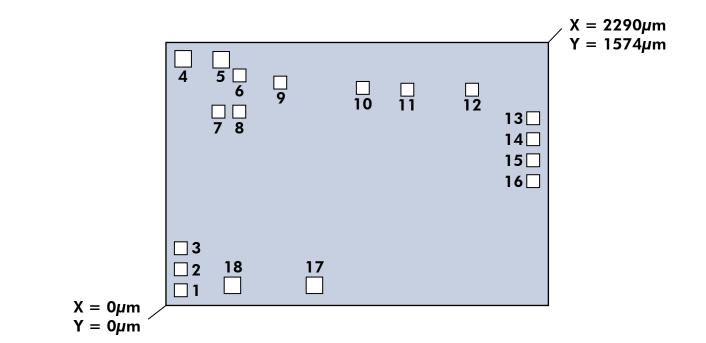
0.6Vpp Intput Eye diagram: Time scale 20ps/div, amplitude scale= 150mV/div.

28GBps Output Eye diagram


2.2Vpp Output Eye diagram: Time scale 20ps/div, amplitude scale= 400mV/div.

50GBps Input Eye diagram

0.7Vpp Intput Eye diagram: Time scale 10ps/div, amplitude scale= 150mV/div.


50GBps Output Eye diagram

3Vpp Output Eye diagram: Time scale 10ps/div, amplitude scale= 500mV/div.

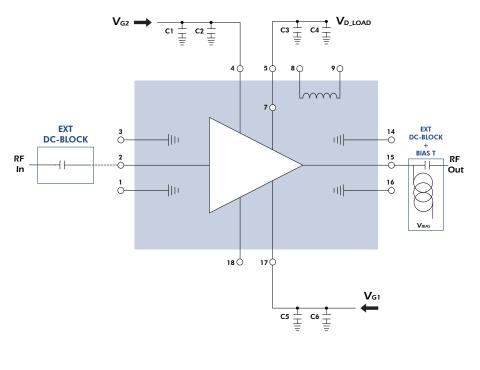
Die Layout

Pinout and Bonding Pad Coordinates

Die Pin Out				
Pad	X (μm)	Υ (μm)	Size (µm x µm)	Function
1	90	92	75x75	GND
2	90	217	75x75	RF In
3	90	342	75x75	GND
4	102	1478	100x100	V_{G2}
5	330	1472	100x100	V_{D_LOAD}
6	441	1377	75x75	RA
7	315	1160	75x75	V_{DL} In
8	440	1160	75x75	V _{SELF} Out
9	685	1335	75x75	V_{SELF} In
10	1180	1305	75x75	V_{B} _Ref
11	1446	1291	75x75	V _{REF}
12	1834	1291	75x75	V _{DET} Out
13	2199	1121	75x75	V_{DET} In
14	2199	996	75x75	GND
15	2199	871	75x75	RF Out
16	2199	746	75x75	GND
17	890	119	100x100	V _{G1_A}
18	400	119	100x100	V _{G1_B}

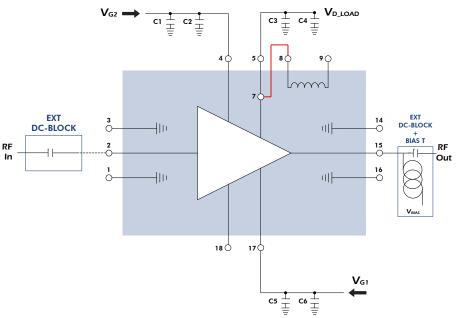
Die thickness = 100µm Die bottom must be connected to ground (RF and DC)

VectraWave


	Access Description				
Pin Number	Name	Description	Electrical interface		
2	RF In	RF input, This access is DC coupled and internally matched to 50Ω.			
4	V_{G2}	Gate control input access for second stage distributed amplifier structure. Apply +2.5V for nominal biasing conditions.			
5	$V_{D_{LOAD}}$	Drain termination load decoupling access. This access must be connected to a MIM 100pF or 1000pF capacitor, with a low	Vself Vself		
15	RF Out	RF output, This access is DC coupled and internally matched to 50Ω . It can also be used to feed the drain current (ID), by using a wide bandwidth external Bias-T structure.			
7	V_{DL} In	Input drain line access, if internal biasing circuit is used, it must be connected to VSELF_IN by using a small bonding wire connection.			
8	V _{SELF} Out	Biasing circuit input pad access, if internal biasing circuit is used; it must be connected to VDD power supply. Depending on the working bandwidth, some additional exter- nal components can be added (See end of documents for explanations).			
9	V _{self} _In	Biasing circuit embedded pad access, if internal biasing circuit is used; it must be connected to VDL_IN by using a small bon- ding wire connection.			
10	$V_{\text{B}_{\text{REF}}}$	Biasing reference diode access	VREF VB_REF		
11	V_{REF}	Reference diode voltage access	(11) (10)		
12	VDET_Out	Detector output			
13	V _{DET} _In	Detector Input	(12) (13)		
17	V _{G1_A}	Gate control output access for first stage dis- tributed amplifier structure. It can be connec- ted to a negative power supply voltage source in order to decrease the drain current consumption. Or it can be left open.	VG1_A VG1_B		
18	V _{G1_B}	Gate control input access for first stage distri- buted amplifier structure. It can be connected directly to the amplifier access by a small bonding wire.			
Die Bottom	GND	Die must be connected to HF and DC ground			

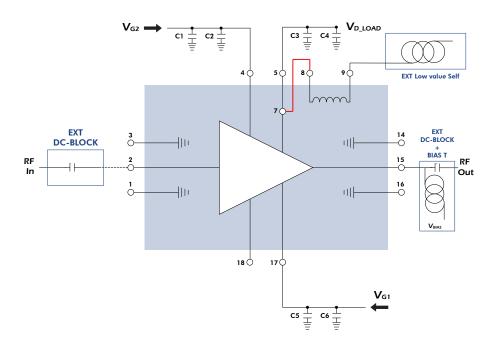
VectraWave

Application Circuit


Configuration A

- C1, C4 and C6 = 1µF
- C2, C3 and C5 = 1nF capcitors are MIM type and must be placed as close as possible to the die access.

Configuration B


- C1, C4 and C6 = 1μ F
- C2, C3 and C5 = 1nF capcitors are MIM type and must be placed as close as possible to the die access.

Configuration C

- C1, C4 and C6 = 1µF
- C2, C3 and C5 = 1nF capcitors are MIM type and must be placed as close as possible to the die access.

Ordering Information

Product Code

VWA 5000054AA

DC To 44GHz / 12dB Gain / 21dBm P_{SAT}

Definition

Associated Material

Material	Status
Packaged die	Contact factory
Die Evaluation Board (die EVB)	Contact factory
Packaged die Evaluation Board (packaged die EVB)	Contact factory
Mechanical files (DXF)	Contact factory
Measurents files (S2P)	Contact factory

Product Compliance Information

Solderability :

Use only AuSn (80/20) solder and limit exposure to temperature above 300 °C TO 3 - 4 minutes, maximum

ESD Sensitivy Rating :

Test : Human Body Model (HBM) Standard : JEDEC Standard JESD22-A114

CAUTION ! ESD-Sensitive device

RoHS-Compliance :

This part is compliant with EU 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment).

This product also has the following attributes:

- Lead Free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C15H12Br402) Free
- PFOS Free
- SVHC Free

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations, and information about Vectrawave:

Vectrawave SA 5, rue Louis de Broglie 22 300 Lannion France

Represented by

www.vectrawave.com

Email sales: <u>contact_sales@vectrawave.com</u> Tel sales:+33 (0)2 57 63 00 20

VectraWave

Informations contained in this document, are considered to be accurate and reliable. However, no responsibility is assumed by Vectrawave for the consequence of its use, nor for any infringement of patents or other rights of third parties that may result from this use. Products are not authorized for use in life support devices without prior written approval from Vectrawave.Specifications are subject to changewithout notice