

FEATURES

LO/RF Frequency: 4.0 - 8.0 GHz
Input IP3: +23 dBm
Sideband Suppression: -38 dBc
LO Leakage: -35 dBm
LO Power: +4 dBm

DC Power: +5V @ 110 mA, -5V @ 40 mA

DESCRIPTION

The AM4080A quadrature modulator is ideal for converting baseband I/Q modulation directly to RF. All bandpass RF modulation types are supported including BPSK, QPSK, QAM, OFDM, AM, FM, PM, FMCW, and pulsed Doppler.

In-stock units feature DC-300 MHz I/Q bandwidth. The LO leakage is factory nulled at the center LO frequency. Contact Polyphase Microwave for I/Q lowpass filter options or narrowband frequency optimization.

The AM4080A includes an I/Q mixer, LO amplifier, I/Q lowpass filters, and I/Q differential amplifiers. The AM4080A can be interfaced directly with single-ended or differential I/Q sources including most high-speed DACs. For more information, please refer to the MODULATOR INTERFACING section of this datasheet.

TYPICAL APPLICATION: DIRECT CONVERSION TRANSMITTER

ELECTRICAL SPECIFICATIONS

Test Conditions: +25°C, LO = +4 dBm, I/Q inputs = 0 dBm total @ 100 kHz unless otherwise noted.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
LO/RF Frequency Range		4.0		8.0	GHz
+5V DC Supply Range		+4.9	+5.0	+5.2	V
-5V DC Supply Range		-5.2	-5.0	-4.9	V
+5V DC Supply Current			110		mA
-5V DC Supply Current			40		mA
LO Power		+2	+4	+6	dBm
LO VSWR			1.5:1		Ratio
RF VSWR			2.5:1		Ratio
I/Q Baseband Filter Bandwidth ¹	<3 dB Flatness	DC		300	MHz
I/Q Baseband Filter Stop Band ¹	>25 dB Rejection	450		5000	MHz
I/Q Input Differential Input Impedance			100		Ω
I/Q Input Common-Mode Range	100 Ω Diff. Source	-2.5		+2.5	V
I/Q Input Differential-Mode Range	100 Ω Diff. Source	-1		+1	V
Conversion Loss			7.0	9.0	dB
Input IP3	2-Tone, Δf = 1 MHz		+23		dBm
Output P1dB			+7		dBm
LO Leakage at RF Port	No RF input drive		-35	-19	dBm
Sideband Suppression ²			-38	-28	dBc
Amplitude Imbalance		-0.3	±0.1	+0.3	dB
Quadrature Phase Error		-4	-1	+3	Degree
Output Noise Level	10 MHz Offset		-162		dBm/Hz
Operating Temperature Range		-40		+85	°C
LO/RF/IQ Input Power w/o Damage				+16	dBm

Notes:

- 1. Standard lowpass filters. Contact factory for other options.
- 2. For upper sideband operation: $I = \cos(1)$, $\bar{I} = -\cos(1)$, $\bar{Q} = \sin(1)$, $\bar{Q} = -\sin(1)$

DIMENSION DRAWING

TYPICAL PERFORMANCE CHARACTERISTICS

Standard Test Conditions: +25°C, LO = +4 dBm, I/Q inputs = 0 dBm total @ 100 kHz.

Amplitude Imbalance 0.8 0.6 0.4 0.0 0.2 0.0 -0.2 -0.4 -0.6 -0.8 4.0 5.0 6.0 7.0 8.0 Frequency (GHz)

MODULATOR INTERFACING

I/Q INPUTS

The AM4080A is designed for easy interfacing to both single-ended and differential I and Q sources. The modulator's I and Q inputs are differential with 100 Ω input impedance. The I/Q common-mode voltage range (DC bias) is -2.5 V to + 2.5 V. The differential-mode voltage range is -1 V to +1 V. Internal lowpass filters set the modulator's I/Q baseband 3 dB bandwidth to 300 MHz. Contact the factory for other available filter bandwidths.

SINGLE-ENDED I/Q DRIVE

The AM4080A can be driven with single-ended I/Q signals. Connect the single-ended I and Q sources directly to the modulator's I and Q inputs as shown in Figure 1. To minimize LO leakage, terminate the unused \overline{I} and \overline{Q} inputs with matched DC resistances to ground. The termination resistance should be chosen to provide the modulator's 4 I/Q input ports with identical resistance to ground at DC (0 Hz).

Figure 1. Single-Ended I/Q Drive

For example, if the I and Q input signals are provided by an arbitrary waveform generator having 50 Ω source impedance, the unused \overline{I} and \overline{Q} inputs should each be terminated with 50 Ω resistances to ground. If the I and Q input signals are AC-coupled then the \overline{I} and \overline{Q} inputs should be left open.

DAC INTERFACING

The AM4080A is designed for direct connection to high-speed DACs having differential current-source outputs. One example is the Analog Devices AD9783, a dual 16-bit 500 MSPS DAC. Figure 2 shows the AD9783 DAC driving the AM4080A modulator. No external resistors, amplifiers, or filters are required.

When configured for 20 mA full-scale current, the AD9783 provides the AM4080A with 1 $V_{\text{p-p}}$ differential signals centered at a common-mode voltage of 500 mV.

Figure 2. AD9783 Driving AM4080A

