Φ1.8mm 905nm Silicon avalanche photodiode

Description

Si avalanche Photodetector module integrates low-noise APD detector, low-noise broadband transimpedance amplifier, ultra-low noise isolation power supply, high-voltage power supply; isolation power supply ensures that the output signal is not affected by external power supply; APD temperature compensation improves the stability of detection module. Avalanche photodetectors are characterized by high gain, high sensitivity, high bandwidth and low noise.

Features

- Top illumination planar APD
- High operation frequency, High multiplication gain
- Laser range finder, Laser alarming, RADAR, etc. application.

Application

- Optical Fiber Sensing
- Optical Fiber Communication
- Laser Ranging
- Spectrometry

E/O Characteristics

The opto-eletronic characteritics (@Tc=22±3℃)

Parameters	Sym.	Test conditions	Min	Тур	Max	Unit
Response Spectrum	λ			00	nm	
Active diameter	φ		1800			μm
Reponsivity	Re	λ=905nm,φe=1μw, M=100	50	55		A/W
Response time	Ts	f=1MHz,RL=50Ω,λ=905nm		1.0		ns
Dark current	ID	M=100		3.0	8.0	nA
Total capacitance	Ctot	M=100,f=1MHz		8.0		рF
Reverse breakdown voltage	VBR	IR=10uA	120		220	V
Operating voltage temperature coefficient	δ	Tc=-40℃~85℃		1.1		V/℃

The absolute values

Operating voltage	0.95×VBR	Operating temperature	-50~85 ℃	Power dissipation	1mW
Forward current	1mA	storage temperature	-55 ~ 100 ℃	Soldering temperature(time)	260℃(10s)

The typical characteristical curve

Figure1. Responsivity vs. Wavelength at 0v

Headquarters:288,Woolands Loop, #04-00,Singapore 738100

info@ld-pd.com

LD-PD INC

Figure2. Gain vs. UR/UBR

Figure3. Dark Current vs. UR/UBR

D-PD INC

The application electric circuit

Figure5. Equivalent Circuit Diagram

Figure6. optical Drawing

Note:

C1 - filter capacitor, mainly to filter out the noise of the bias working voltage VR;

C2 - bypass capacitor, mainly to provide a ground loop for the AC signal;

R1 - current limiting resistor, mainly to protect the detector from being damaged when the bias working voltage VR is too high;

Ri-sampling resistor, which converts the photocurrent into a voltage signal.

Dimensions and Pin definitions

The cautions

1. The suitable ESD protecting measures are recommend in storage, transporting and using.

