FEATURES

- Operating Frequency Range: DC to 3.7GHz .
- Operating Drain Voltage: 28V & 50V •
- Maximum Output Power (PSAT): 80W .
- Bare die shipped in Gel-Pak containers •
- Suitable for CW, Pulsed, Linear applications .
- 100% KGD DC Production Tested

DESCRIPTION

The GD060 is a 80W (P3dB) unmatched discrete GaN-on-SiC HEMT which operates from DC to 3.7GHz on a 50V supply rail. The wide bandwidth of the GD060 makes it suitable for a variety of applications including cellular infrastructure, radar, communications, and test instrumentation, and can support CW, linear and pulse operations.

Bare die are shipped in Gel-Pak containers for safe transport and storage.

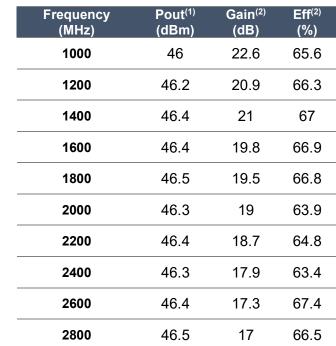
Typical Performances Measured Loadpull 1 Tone pulsed CW (10% duty cycle, 100µs width) in DFN 6x3 package, 2nd Harmonics NOT optimized

Eff⁽²⁾

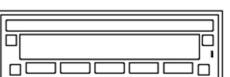
- (1) Optimum Peak Power at 2.5dB in compression
- (2) Optimum Peak Efficiency at 2.5dB in compression

Gain⁽²⁾

Vds=50V, Idq= 78 mA, T_A = 25°C


Frequency

(MHz)	(dBm)	(dB)	(%)
1000	48.5	23.5	65.1
1200	48.8	24.2	66.5
1400	48.9	23.4	67.6
1600	49	21.8	67.3
1800	49.1	22.1	66.9
2000	48.9	20.7	63.5
2200	49	20	63.1
2400	48.9	19.6	62
2600	49.1	19.2	66.6
2800	49.1	19.4	65.4

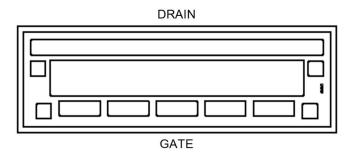

Pout⁽¹⁾

Г

2.35 x 0.75 mm Die

Vds=28V, Idq= 78 mA, T_A = 25°C

50V, DC - 3.7GHz, 60W GaN HEMT


50V, DC - 3.7GHz, 60W GaN HEMT

ABSOLUTE MAXIMUM RATINGS^(1, 2)

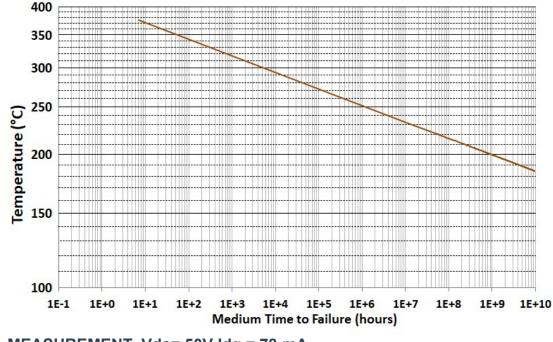
Parameter	Rating	Symbols and Units
Drain Source Voltage	150	$V_{DS}(V)$
Gate Source Voltage	-8 to +2	V _{GS} (V)
Operating Voltage	55	V _{dsq} (V)
Junction Temperature	+225	T _{JUNC} (°C)
Storage Temperature	-65 to +150	T _{STORAGE} (°C)

 Exceeding any of these limits may cause permanent damage to this device or seriously limit the life time (MTTF)
GalliumSemi does not recommend sustained operation above maximum operating conditions.

BLOCK DIAGRAM

ELECTRICAL SPECIFICATIONS: T_A = 25°C

Parameter	Min.	Тур.	Max.	Symbols and Units	Test conditions
Frequency Range	DC		3.7	MHz	
DC Characteristics					
Drain Source Breakdown Voltage	150			V _{BDSS} (V)	
Drain Source Leakage Current		3.2		I _{DLK} (mA)	Vgs = -8V, Vds = 50V
Gate Threshold Voltage	-3.4		-1.5	V _{GS} (V)	Vds = 50V
Operating Conditions					
Gate Bias Voltage		-2.5		V _{GSQ} (V)	
Drain Voltage		50		V _{DSQ} (V)	
Quiescent Drain Current		78		I _{DQ} (mA)	


50V, DC - 3.7GHz, 60W GaN HEMT

THERMAL AND RELABILITY INFORMATION -CW ^(1, 2): T_c = 85°C

Parameter	Test condition	Value	Units	Notes
Channel Temperature, Tch		128.1	°C	
Rth die	Pdiss 15 W	1.59	°C/W	
MTTF		>1.0E+10	Hrs	
Channel Temperature, Tch		179.6	°C	
Rth die	Pdiss 30 W	1.81	°C/W	
MTTF		1.0E+10	Hrs	
	· · · · · · · · · · · · · · · · · · ·	·		
Channel Temperature, Tch		239.4	°C	
Rth die	Pdiss 47 W	1.96	°C/W	
MTTF		4.0E+06	Hrs	

1.Assumes eutectic attach using 1mil low temp solder, mounted to a 8 mil DFN package.

2:Thermal Resistance using Finite Element Analysis (FEA) simulation, calibrated with Infrared measurement on surface temperature.

LOADPULL MEASUREMENT, Vds= 50V ldq = 78 mA

Rev. D July 2022 Subject to change without notice.

Die packaged in DFN 6x3, Measured 1 Tone Pulse CW, pulse width 100us, duty cycle 10%

For Optimum Peak Power @ 2.5dB Compression							
Freq-MHz	Zin_F0	ZI_F0	Gain-dB	Pout-dBm	Pout-W	Eff-%	AMPM-deg
1000	2.2 j -8.3	9.7 j 1.4	22.1	48.5	72.1	51	1.8
1200	1.7 j -6.3	13.2 j 2.1	21.8	48.8	75.7	58	3.2
1400	1.6 j -5.2	8.8 j 2.4	21.3	48.9	79.7	53.9	2.3
1600	1.5 j -3.8	9.6 j 2.7	20.5	49	81.5	55.5	1.6
1800	1.1 j -2.8	9.0 j 3.9	20.4	49.1	81.3	57.9	1.5
2000	1.2 j -2.2	8.2 j 1.5	18.5	48.9	77.8	49.6	2.1
2200	1.3 j -1.4	8.6 j 3.0	18.8	49	79.5	55.3	1.4
2400	1.2 j -0.7	9.2 j 2.7	16.9	48.9	77.1	54	3.6
2600	1.0 j -0.1	6.6 j 2.1	17.7	49.1	82.6	54.8	0.8
2800	1.1 j 0.5	6.8 j 2.5	17.8	49.1	81.5	55.8	-0.2
3000	1.1 j 1.0	6.7 j 1.8	16.6	49.1	81.3	54.3	0.5
3500	1.1 j 2.3	5.1 j 0.7	15.1	49.1	81.2	52.1	-0.1

	For Optimum Peak Efficiency @ 2.5dB Compression						
Freq-MHz	Zin_F0	ZI_F0	Gain-dB	Pout-dBm	Pout-W	Eff-%	AMPM-deg
1000	1.8 j -7.4	16.7 j 7.5	23.5	48	64.9	65.1	1.4
1200	1.0 j -5.1	15.2 j 12.8	24.2	47.4	55.7	66.5	1.1
1400	1.0 j -4.0	13.8 j 12.3	23.4	47.5	56.6	67.6	2.1
1600	1.0 j -2.8	12.6 j 12.4	21.8	47.5	56.3	67.3	2
1800	0.7 j -1.8	9.5 j 11.3	22.1	47.7	58.9	66.9	-0.5
2000	0.8 j -1.2	9.1 j 11.0	20.7	47.4	56.1	63.5	0.8
2200	1.0 j -1.0	9.1 j 9.5	20	47.8	60.3	63.1	1.3
2400	0.8 j -0.3	7.1 j 7.1	19.6	48.1	65.3	62	-0.1
2600	0.8 j 0.5	6.6 j 8.5	19.2	47.7	58.8	66.6	0.3
2800	0.7 j 1.3	4.9 j 8.3	19.4	47	50.3	65.4	-0.9
3000	0.6 j 1.7	4.8 j 6.8	18.8	47.5	57	64.3	-2.4
3500	0.7 j 2.9	3.5 j 4.2	17.2	47.8	60.4	62.8	-2.4

50V, DC - 3.7GHz, 60W GaN HEMT

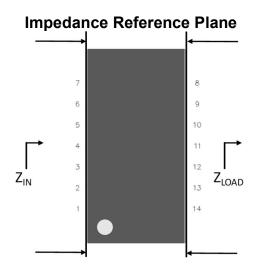
50V, DC - 3.7GHz, 60W GaN HEMT

LOADPULL MEASUREMENT, Vds= 28V ldq = 78 mA

Die packaged in DFN 6x3, Measured 1 Tone Pulse CW, pulse width 100us, duty cycle 10%

For Optimum Peak Power @ 2.5dB Compression							
Freq-MHz	Zin_F0	ZI_F0	Gain-dB	Pout-dBm	Pout-W	Eff-%	AMPM-deg
1000	2.1 j -7.9	8.2 j 0.0	21.5	46	40.3	59	0.3
1200	1.4 j -6.0	8.5 j 0.4	21	46.2	42.2	61.4	1.2
1400	1.2 j -5.1	6.0 j 0.1	19.8	46.4	43.3	55.6	2.2
1600	1.3 j -3.6	7.4 j 0.6	19.7	46.4	43.7	60.4	-0.2
1800	1.3 j -2.8	6.6 j 0.1	19.1	46.5	44.4	57.7	0
2000	1.1 j -1.9	7.2 j 1.2	18.7	46.3	42.3	60.3	-0.3
2200	1.0 j -1.3	6.5 j 0.4	18.1	46.4	43.4	59	-0.2
2400	1.0 j -0.7	5.9 j -0.4	16	46.3	42.9	55.1	1
2600	0.9 j 0.1	5.9 j 0.1	16.6	46.4	44.8	60.2	-0.5
2800	1.0 j 0.6	5.7 j -0.1	16.3	46.5	44.5	58.9	-0.7
3000	1.0 j 1.2	6.1 j -0.7	15.6	46.4	43.5	57.7	-1.2
3500	1.0 j 2.5	4.2 j -0.9	14.6	46.4	43.7	57.4	-2.2

For Optimum Peak Efficiency @ 2.5dB Compression							
Freq-MHz	Zin_F0	ZI_F0	Gain-dB	Pout-dBm	Pout-W	Eff-%	AMPM-deg
1000	1.3 j -6.0	14.8 j 7.1	22.6	43.8	24.3	65.6	0.5
1200	1.3 j -5.0	16.0 j 5.6	20.9	44.4	27.1	66.3	2.7
1400	1.0 j -4.0	13.0 j 6.9	21	44.4	27.4	67	1.7
1600	1.0 j -2.3	10.6 j 8.0	19.8	44.1	25.9	66.9	0
1800	0.9 j -1.7	9.6 j 6.7	19.5	44.7	29.4	66.8	-0.3
2000	0.8 j -1.1	7.9 j 5.7	19	44.8	30.3	63.9	-1.1
2200	0.8 j -0.7	7.5 j 4.3	18.7	45.2	33.2	64.8	-0.8
2400	0.7 j 0.2	6.2 j 4.8	17.9	44.7	30	63.4	-1.9
2600	0.8 j 0.7	6.3 j 4.0	17.3	45.3	34.4	67.4	-1.9
2800	0.7 j 1.2	6.0 j 3.7	17	45.4	34.3	66.5	-1.8
3000	0.6 j 1.8	5.0 j 3.6	16.7	44.9	31.7	66	-3.2
3500	0.7 j 3.1	3.7 j 2.3	15.2	44.8	30.3	65.1	-3.3

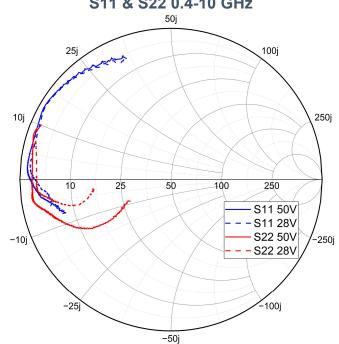

50V, DC – 3.7GHz, 60W GaN HEMT

LOADPULL MEASUREMENT NOTES

Source and Load impedance @ 2nd Harmonic are set to 10 Ohms

With proper 2nd Harmonic termination, expect +5% Efficiency for Source and similar with Drain 2nd Harmonic.

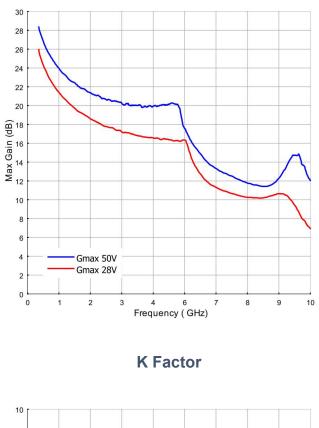
 Z_{LOAD} : Measured Impedance presented to the output of the device in the reference plane Z_{IN} : Measured input Impedance at the input of the device in the reference plane

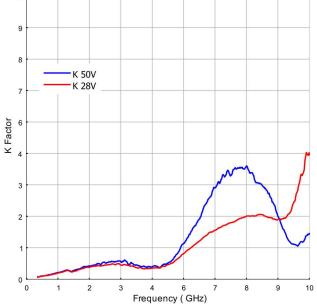

Raw data and full Loadpull measurement report available at request: sales@galliumsemi.com

50V, DC - 3.7GHz, 60W GaN HEMT

BROADBAND S-PARAMETERS MEASUREMENT, Vds= 28 & 50V Idq = 78 mA Die packaged in DFN 6x3, Measured 1 Tone CW

25 0 19 12 6 -3 0 -7 S21 & S12 (dB) -13 -26 -26 -32 -32 S11 & S22 (dB) -5 -6 -38 S11 50V -45 S12 50V -8 S21 50V -51 S22 50V S22 28V -57 -9 S12 28V S21 28V -64 S11 28V -70 0 2 9 3 8 5 4 Frequency (GHz) S11 & S22 0.4-10 GHz 50j


S Parameters (Mag-dB)



50V, DC - 3.7GHz, 60W GaN HEMT

BROADBAND S-PARAMETERS MEASUREMENT, Vds= 28 & 50V Idq = 78 mA Die packaged in DFN 6x3, Measured 1 Tone CW

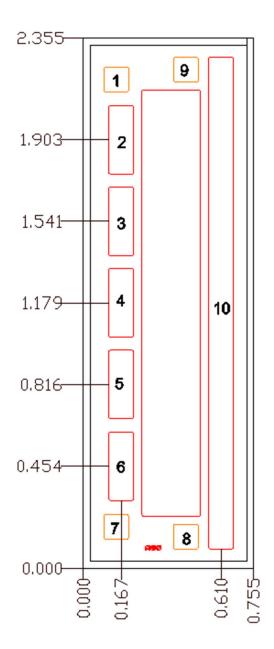
Maximum Available Gain

50V, DC - 6.0GHz, 60W GaN HEMT

GaN HEMT BIASING SEQUENCE

To turn the transistor ON

- 1. Set V_{GS} to -5V
- 2. Turn on V_{DS} to normal operation voltage (50V)
- 3. Slowly increase V_{GS} to set I_{DQ} current (78mA)
- 4. Apply RF power


To turn the transistor OFF

- 1. Turn the RF power off
- 2. Decrease V_{GS} to -1.5V
- 3. Turn off $V_{D.}$ Wait a few seconds for drain capacitor to discharge
- 4. Turn off V_{GS}

50V, DC - 6.0GHz, 60W GaN HEMT

DIE DIMENSIONS

Bond Pads

Pad nb.	Description	Dimensions
1, 7, 8, 9	Not connected	
2, 3, 4, 5, 6	RF Input / Gate Voltage	0.110 x 0.305
10	RF Output / Drain Voltage	0.110 x 2.184
Backside	Source/ Ground	0.755 x 2.355

Notes:

- 1. All dimensions are in millimeter
- 2. Die thickness is 75 um
- 3. Bond pad metallization: gold
- 4. Backside metallization: gold

50V, DC - 6.0GHz, 60W GaN HEMT

HANDLING PRECAUTIONS

Parameter	Symbol	Class	Test Methodology
ESD*-Human Body Model	HBM	Class 1A (250 V)	ANSI/ESDA/JEDEC Standard JS-001
ESD* – Charged Device Model	CDM	Class C3 (1500 V)	ANSI/ESDA/JEDEC Standard JS-002

* Tested in DFN 3x6 package

50V, DC - 6.0GHz, 60W GaN HEMT

CONTACT INFORMATION

To request latest information and samples, please contact us at:

Web: https://www.galliumsemi.com/

Email: <u>sales@galliumsemi.com</u>

IMPORTANT NOTICE

Even though Gallium Semiconductor believes the material in this document to be reliable, it makes no guarantees as to its accuracy and disclaims all responsibility for any damages that may arise from using its contents. Contents in this document are subject to change at any time without prior notice. Customers should obtain and validate the most recent essential information prior to making orders for Gallium Semiconductor products. The information provided here or any use of such material, whether about the information itself or anything it describes, does not grant any party any patent rights, licenses, or other intellectual property rights. Without limiting the generality of the aforementioned, Gallium Semiconductor products are neither warranted nor approved for use as crucial parts in medical, lifesaving, or life-sustaining applications, or in any other applications where a failure would likely result in serious personal injury or death.

GALLIUM SEMICONDUCTOR DISCLAIMS ANY AND ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WITH RESPECT TO SUCH PRODUCTS, WHETHER BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE.