GD080

FEATURES

DESCRIPTION

- Operating Frequency Range: DC to 3.7GHz
- Operating Drain Voltage: +50V
- Maximum Output Power (PSAT): 100W
- Maximum Drain Efficiency: 60%
- Efficiency-Tuned P3dB Gain: 15.5dB
- Bare die shipped in Gel-Pak containers

The GD080 is an 100W (P3dB) unmatched discrete GaN-on-SiC HEMT which operates from DC to 3.7GHz on a 50V supply rail. The wide bandwidth of the GD080 makes it suitable for a variety of applications including cellular infrastructure, radar, communications, and test instrumentation, and can support both CW and pulsed mode of operations.

Bare die are shipped in Gel-Pak containers for safe transport and storage.

TYPICAL PERFORMANCE: POWER TUNED, T_A = 25°C

	3.6 GHz	Units
Gain	14.5	dB
Saturated Output Power	100	W
Drain Efficiency	54	%

 $V_D = 50V, I_{DQ} = 100mA$

TYPICAL PERFORMANCE: EFFICIENCY TUNED, T_A = 25^{\circ}C

	3.6 GHz	Units
Gain	15.5	dB
Saturated Output Power	80	W
Drain Efficiency	60	%

 $V_D = 50V, I_{DQ} = 100A$

50V, DC - 3.7GHZ, 80W GAN HEMT

GD080

50V, DC - 3.7GHZ, 80W GAN HEMT

BLOCK DIAGRAM (units in microns)

ABSOLUTE MAXIMUM RATINGS

Parameter	Rating	Units
Breakdown Voltage	>150	BV _{DG} (V)
Gate Source Voltage	-8 to +2	V _{GS} (V)
Operating Voltage	55	V (V)
Junction Temperature	+225	(°C)
Storage Temperature	-65 to +150	(°C)

ELECTRICAL SPECIFICATIONS: T_A = 25°C

Parameter	Min	Тур	Max	Unite	Notes
i arameter		iyp.		Units	NOLES
Frequency Range	DC		3700	MHz	
DC Characteristics					
Drain Source Breakdown Voltag	е	150		V _{DS} (V)	
Drain Source Leakage Current		0.94		I _{DS} (mA)	
Gate Threshold Voltage		-3 to -1.3		V _{GS} (V)	
Operating Conditions					
Gate Voltage		-2.5		V _G (V)	
Drain Voltage		50		V _D (V)	
Quiescent Drain Current		100		I _{DQ} (mA)	
Thermal Characteristics					
Thermal Resistance		TBD		(°C/W)	

GD080

50V, DC - 3.7GHZ, 80W GAN HEMT

GaN HEMT BIASING SEQUENCE

To turn the transistor ON

- 1. Set V_{GS} to -5V
- 2. Turn on V_{DS} to normal operation voltage (50V)
- 3. Slowly increase Vgs to set Ibs current (100mA)
- 4. Apply RF power

To turn the transistor OFF

- 1. Turn the RF power off
- 2. Decrease V_{GS} to -5V
- 3. Turn off V_D. Wait a few seconds for drain capacitor to discharge
- 4. Turn off Vgs

CONTACT INFORMATION

To request latest information and samples, please contact us at:

Web: <u>https://www.galliumsemi.com/</u>

Email: sales@galliumsemi.com