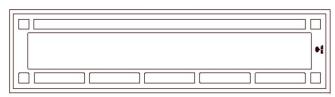
FEATURES

DESCRIPTION

- Operating Frequency Range: DC to 3.2GHz
- Operating Drain Voltage: 28V & 50V
- Maximum Output Power (PSAT): 200W
- Bare die shipped in Gel-Pak containers
- Suitable for CW, Pulsed, Linear applications
- 100% KGD DC Production Tested

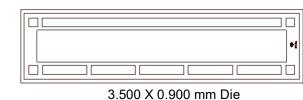
The GD200 is a 200W (P3dB) unmatched discrete GaN-on-SiC HEMT which operates from DC to 3.2 GHz on a 50V supply rail. The wide bandwidth of the GD200 makes it suitable for a variety of applications including cellular infrastructure, radar, communications, and test instrumentation, and can support CW, linear and pulse operations.

Bare die are shipped in Gel-Pak containers for safe transport and storage.


ABSOLUTE MAXIMUM RATINGS^(1, 2)

Parameter	Rating	Symbols and Units
Drain Source Voltage	150	$V_{DS}(V)$
Gate Source Voltage	-8 to +2	V _{GS} (V)
Operating Voltage	55	V _{dsq} (V)
Junction Temperature	+225	T _{JUNC} (°C)
Storage Temperature	-65 to +150	T _{STORAGE} (°C)

 Exceeding any of these limits may cause permanent damage to this device or seriously limit the life time (MTTF)
GalliumSemi does not recommend sustained operation above maximum operating conditions.



BLOCK DIAGRAM

DRAIN

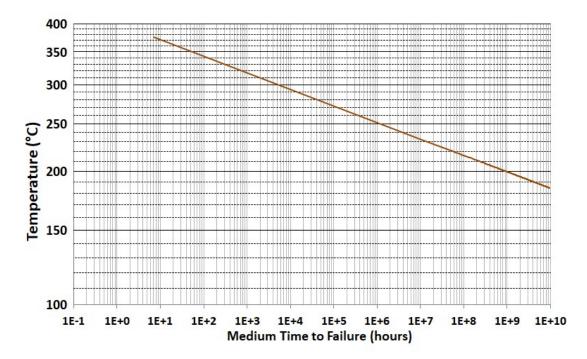
GATE

50V, DC – 3.2GHz, 200W GaN HEMT

50V, DC - 3.2GHz, 200W GaN HEMT

ELECTRICAL SPECIFICATION: TA = 25°C

Parameter	Min.	Тур.	Max.	Symbols and Units	Test conditions
Frequency Range	DC		3200	MHz	
DC Characteristics					
Drain Source Breakdown Voltage	150			V _{BDSS} (V)	
Drain Source Leakage Current		4.4		I _{DLK} (mA)	Vgs = -8V, Vds = 50V
Gate Threshold Voltage	-3.4		-1.5	V _{GS} (V)	Vds = 50V
Operating Conditions					
Gate Bias Voltage		-2.5		V _{GSQ} (V)	
Drain Voltage		50		V _{DSQ} (V)	
Quiescent Drain Current		200		I _{DQ} (mA)	


50V, DC - 3.2GHz, 200W GaN HEMT

THERMAL AND RELABILITY INFORMATION -CW ^(1, 2): T_c = 85°C

Parameter	Test condition	Value	Units	Notes
Channel Temperature, Tch		250	°C	
Rth die	Pdiss 80 W	2.06	°C/W	
MTTF		1.0E6	Hrs	

1.Assumes eutectic attach using 1mil low temp solder, mounted to a 8 mil DFN package.

2:Thermal Resistance using Finite Element Analysis (FEA) simulation, calibrated with Infrared measurement on surface temperature.

50V, DC – 3.2GHz, 200W GaN HEMT

GaN HEMT BIASING SEQUENCE

To turn the transistor ON

- 1. Set V_{GS} to -5V
- 2. Turn on V_{DS} to normal operation voltage (50V)
- 3. Slowly increase V_{GS} to set I_{DQ} current (200 mÅ)
- 4. Apply RF power


To turn the transistor OFF

- 1. Turn the RF power off
- 2. Decrease V_{GS} to -1.5V
- 3. Turn off $V_{\text{D.}}$ Wait a few seconds for drain capacitor to discharge
- 4. Turn off V_{GS}

50V, DC - 3.2GHz, 200W GaN HEMT

DIE DIMENSIONS

BOND PADS

Pad nb.	Description	Dimensions
1, 7, 8, 10	Not connected	
2, 3, 4, 5, 6	RF Input / Gate Voltage	0.110 x 0.550
9	RF Output / Drain Voltage	0.110 x 2.966
Backside	Source/ Ground	0.900 x 3.500

Notes:

- 1. All dimensions are in millimeter
- 2. Die thickness is 75 um
- 3. Bond pad metallization: gold
- 4. Backside metallization: gold

50V, DC - 3.2GHz, 200W GaN HEMT

HANDLING PRECAUTIONS

Parameter	Symbol	Class	Test Methodology
ESD*-Human Body Model	HBM	Class 1A (250 V)	ANSI/ESDA/JEDEC Standard JS-001
ESD*-Charged Device Model	CDM	Class C3 (1500 V)	ANSI/ESDA/JEDEC Standard JS-002

* Tested in DFN 3x6 package

50V, DC - 3.2GHz, 200W GaN HEMT

CONTACT INFORMATION

To request latest information and samples, please contact us at:

Web: https://www.galliumsemi.com/

Email: <u>sales@galliumsemi.com</u>

IMPORTANT NOTICE

Even though Gallium Semiconductor believes the material in this document to be reliable, it makes no guarantees as to its accuracy and disclaims all responsibility for any damages that may arise from using its contents. Contents in this document are subject to change at any time without prior notice. Customers should obtain and validate the most recent essential information prior to making orders for Gallium Semiconductor products. The information provided here or any use of such material, whether about the information itself or anything it describes, does not grant any party any patent rights, licenses, or other intellectual property rights. Without limiting the generality of the aforementioned, Gallium Semiconductor products are neither warranted nor approved for use as crucial parts in medical, lifesaving, or life-sustaining applications, or in any other applications where a failure would likely result in serious personal injury or death.

GALLIUM SEMICONDUCTOR DISCLAIMS ANY AND ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WITH RESPECT TO SUCH PRODUCTS, WHETHER BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE.