
50V, DC - 2.9GHz, 250W GaN HEMT

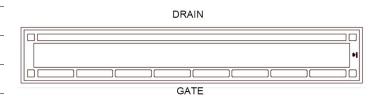
FEATURES

- Operating Frequency Range: DC to 2.9GHz
- Operating Drain Voltage: 28V & 50V
- Maximum Output Power (Psat): 250W
- Bare die shipped in Gel-Pak containers
- Suitable for CW, Pulsed, Linear applications
- 100% KGD DC Production Tested

5.500 X 0.900 mm Die

DESCRIPTION

The GD250 is a 250W (P3dB) unmatched discrete GaN-on-SiC HEMT which operates from DC to 2.9 GHz on a 50V supply rail. The wide bandwidth of the GD250 makes it suitable for a variety of applications including cellular infrastructure, radar, communications, and test instrumentation, and can support CW, linear and pulse operations.


Bare die are shipped in Gel-Pak containers for safe transport and storage.

ABSOLUTE MAXIMUM RATINGS(1, 2)

Parameter	Rating	Symbols and Units
Drain Source Voltage	150	V _{DS} (V)
Gate Source Voltage	-8 to +2	V _{GS} (V)
Operating Voltage	55	V _{dsq} (V)
Junction Temperature	+225	T _{JUNC} (°C)
Storage Temperature	-65 to +150	T _{STORAGE} (°C)

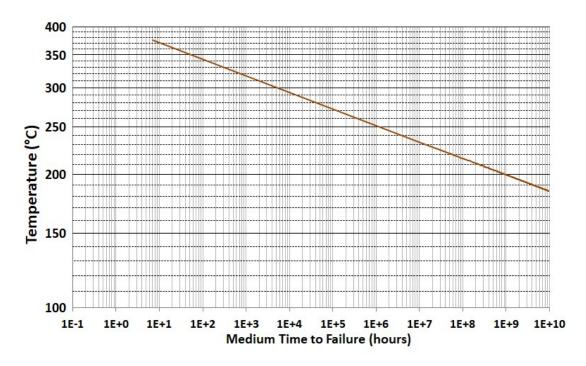
^{1.} Exceeding any of these limits may cause permanent damage to this device or seriously limit the life time (MTTF) 2. GalliumSemi does not recommend sustained operation above maximum operating conditions.

BLOCK DIAGRAM

50V, DC - 2.9GHz, 250W GaN HEMT

ELECTRICAL SPECIFICATION: TA = 25°C

Parameter	Min.	Тур.	Max.	Symbols and Units	Test conditions
Frequency Range	DC		2900	MHz	
DC Characteristics					
Drain Source Breakdown Voltage	150			V _{BDSS} (V)	
Drain Source Leakage Current		4.4		I _{DLK} (mA)	Vgs = -8V, Vds = 50V
Gate Threshold Voltage	-3.4		-1.5	V _{GS} (V)	Vds = 50V
Operating Conditions					
Gate Bias Voltage		-2.5		V _{GSQ} (V)	
Drain Voltage		50		V _{DSQ} (V)	
Quiescent Drain Current		250		I _{DQ} (mA)	
Quicochi Diam Current		200		וטע (וווא)	


50V, DC - 2.9GHz, 250W GaN HEMT

THERMAL AND RELABILITY INFORMATION -CW $^{(1, 2)}$: $T_c = 85^{\circ}$ C

Parameter	Test condition	Value	Units	Notes
Channel Temperature, Tch		222	°C	
Rth die	Pdiss 102 W	1.34	°C/W	
MTTF		7.0E7	Hrs	

^{1.} Assumes eutectic attach using 1 mil low temp solder, mounted to a 8 mil DFN package.

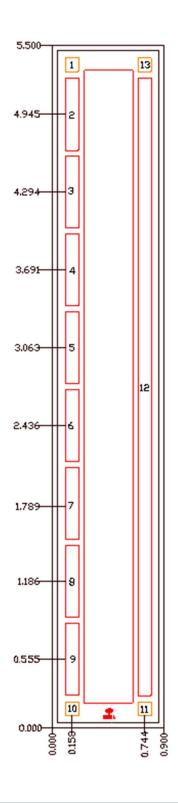
^{2:}Thermal Resistance using Finite Element Analysis (FEA) simulation, calibrated with Infrared measurement on surface temperature.

50V, DC - 2.9GHz, 250W GaN HEMT

Gan HEMT BIASING SEQUENCE

To turn the transistor ON

- 1. Set V_{GS} to -5V
- 2. Turn on V_{DS} to normal operation voltage (50V)
- 3. Slowly increase V_{GS} to set I_{DQ} current (250 mÅ)
- 4. Apply RF power


To turn the transistor OFF

- 1. Turn the RF power off
- 2. Decrease V_{GS} to -1.5V
- 3. Turn off V_{D.} Wait a few seconds for drain capacitor to discharge
- 4. Turn off V_{GS}

50V, DC - 2.9GHz, 250W GaN HEMT

DIE DIMENSIONS

BOND PADS

Pad nb.	Description	Dimensions
1, 10, 11, 13	Not connected	
2, 3, 4, 5, 6, 7, 8, 9	RF Input / Gate Voltage	0.110 x 0.580
12	RF Output / Drain Voltage	0.110 x 4.974
Backside	Source/ Ground	0.900 x 5.500

Notes:

- 1. All dimensions are in millimeter
- 2. Die thickness is 75 um
- 3. Bond pad metallization: gold
- 4. Backside metallization: gold