

50V, DC - 2.9GHz, 220W GaN HEMT

FEATURES

- Operating Frequency Range: DC to 2.9GHz
- Operating Drain Voltage: 28V & 50V
- Maximum Output Power (PSAT): 220W
- Air Cavity Ceramic package
- Suitable for CW, Pulsed, Linear applications
- 100% DC & RF Production Tested

NI-360 Ceramic Package

DESCRIPTION

The GTH0-0029220S is a 220W (P3dB) unmatched discrete GaN-on-SiC HEMT which operates from DC to 2.9GHz on a 50V supply rail. The wide bandwidth of the GTH0-0029220S makes it suitable for a variety of applications including cellular infrastructure, radar, communications, and test instrumentation, and can support CW, linear and pulse operations.

The device is housed in an industry-standard NI-360 Air Cavity Ceramic package. Lead-free and RoHS compliant.

Typical Performances 1 Tone pulsed CW (10% duty cycle, 100µs width), 2nd Harmonics NOT optimized

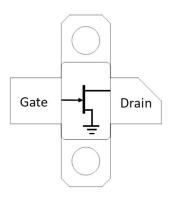
- (1) Optimum Peak Power at 2.5dB in compression
- (2) Optimum Peak Efficiency at 2.5dB in compression

Vds=50V, Idq= 200 mA, T_A = 25°C

Frequency (MHz)	Pout ⁽¹⁾ (dBm)	Gain ⁽²⁾ (dB)	Eff ⁽²⁾ (%)
1500	53.5	22.3	72.8
2000	53.5	20.8	72
2500	53.4	18.2	67.1

Vds=28V, Idq= 200 mA, T_A = 25°C

Frequency (MHz)	Pout ⁽¹⁾ (dBm)	Gain ⁽²⁾ (dB)	Eff ⁽²⁾ (%)
1500	51.2	20.1	72.9
2000	51	18.7	71.7
2500	50.8	16.1	68.5



50V, DC – 2.9GHz, 220W GaN HEMT

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS^(1, 2)

Parameter	Rating	Symbols and Units
Drain Source Voltage	150	V _{DS} (V)
Gate Source Voltage	-8 to +2	V _{GS} (V)
Operating Voltage	55	V _{dsq} (V)
Junction Temperature	+225	T _{JUNC} (°C)
Storage Temperature	-65 to +150	T _{STORAGE} (°C)
Case Operating Temperature	-40 to +105	T _{CASE} (°C)

 Exceeding any of these limits may cause permanent damage to this device or seriously limit the life time (MTTF)
GalliumSemi does not recommend sustained operation above

2. GalilumSemi does not recommend sustained operation ab maximum operating conditions.

ELECTRICAL SPECIFICATIONS: TA = 25°C

Parameter	Min.	Тур.	Max.	Symbols and Units	Test conditions
Frequency Range	DC		2900	MHz	
DC Characteristics					
Drain Source Breakdown Voltage	150			V _{BDSS} (V)	
Drain Source Leakage Current		9		I _{DLK} (mA)	Vgs = -8V, Vds = 50V
Gate Threshold Voltage	-3.4		-1.5	V _{GS} (V)	Vds = 50V
Operating Conditions					
Gate Bias Voltage		-2.5		V _{GSQ} (V)	
Drain Voltage		50		V _{DSQ} (V)	
Quiescent Drain Current		109		I _{DQ} (mA)	

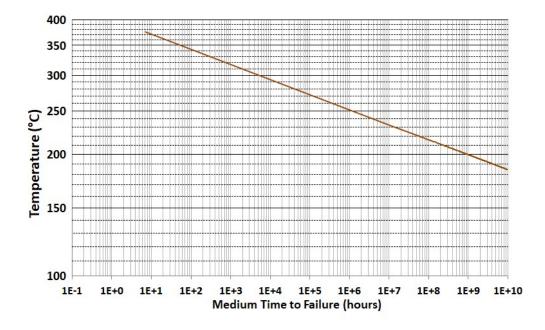
50V, DC - 2.9GHz, 220W GaN HEMT

RF ELECTRICAL SPECIFICATIONS: $T_A = 25^{\circ}C$, VDS = 50 V, IDQ = 200 mA, Freq= 2900MHz Note: Performance⁽¹⁾ in GalliumSemi Production Test Fixture, 50 Ω system

Parameter	Symbol	Min.	Тур.	Max.	Units	Notes
Small Signal Gain	G _{ss}		tbd		dB	
Power Gain	G _{SAT}		tbd		dB	
Saturated Drain Efficiency	DEff _{SAT}		tbd		%	
Saturated Output Power	P _{SAT}		tbd		dBm	
Ruggedness Output mismatch	Ψ	VSWR =	= 10:1, all an	gles		No damage or shift in performances

1. 1 Tone Pulse CW, pulse width 100us, duty cycle 10%

50V, DC - 2.9GHz, 220W GaN HEMT


THERMAL AND RELABILITY INFORMATION -CW ^(1, 2, 3): T_c = 85°C

Parameter	Test condition	Value	Units	Notes
Channel Temperature, Tch		151	°C	
Rth	Pdiss 36 W	1.8	°C/W	
MTTF	_	> 1.0E10	Hrs	
Channel Temperature, Tch		235	°C	
Rth	Pdiss 75 W	2	°C/W	
MTTF		6.8E6	Hrs	
Channel Temperature, Tch		321	°C	
Rth	Pdiss 110 W	2.1	°C/W	
MTTF		170	Hrs	

1.Using 5um thermal grease - 4W/m-K.

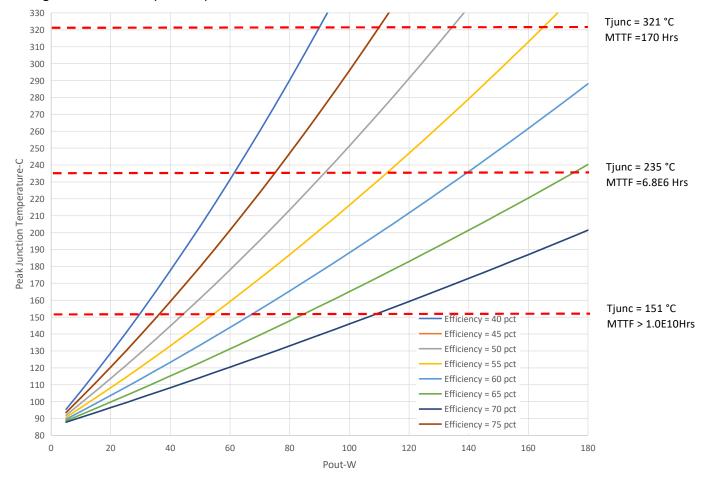
2.Thermal Resistance using Finite Element Analysis (FEA) simulation, calibrated with Infrared measurement on surface temperature.

3.Rth vs Dissipated Power can be generalized with the following equation: Rth_(°C/W) = 0.0782x Pdiss_(W) + 1.6887

SEMICONDUCTOR

50V, DC - 2.9GHz, 220W GaN HEMT

CW OPERATION


The device can withstand CW operation with respect to the application's MTTF (Life time vs. Peak Junction Temperature).

The graph^(1,2) below shows the Peak Junction Temperature vs. the Output Power & Efficiency tradeoff, using the following equations:

- Tjunc(°C) = Pdiss(w) x Rth(°C/W)

- Pdiss(w) = (Pout(w)/ Efficiency(%)) - Pout(w)

E.g.: The device can be used for Pout =110 W CW with Efficiency of 55%, Tjunc will be 235°C, leading to a LifeTime (MTTF) of 6.8E6 Hrs.

Notes:

- 1. 5um thermal grease 4W/m-K
- 2. Back of pkg is 85°C infinite heat sink

50V, DC - 2.9GHz, 220W GaN HEMT

LOADPULL MEASUREMENT, Vds= 50V ldq = 200 mA

1 Tone Pulse CW, pulse width 100us, duty cycle 10%

For Optimum Peak Power @ 2.5dB Compression							
Freq-MHz	Zin_F0	ZI_F0	Gain-dB	Pout-dBm	Pout-W	Eff-%	AMPM-deg
1500	0.7 j -0.0	4.5 j -0.0	20.9	53.5	222.8	64.3	-1.3
2000	0.6 j 1.6	3.9 j -1.8	18.1	53.5	221.8	58.8	-0.8
2500	0.6 j 3.2	3.3 j -2.6	16.4	53.4	217.1	57.3	-1.1

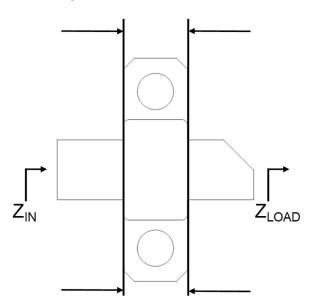
For Optimum Peak Efficiency @ 2.5dB Compression							
Freq-MHz	Zin_F0	ZI_F0	Gain-dB	Pout-dBm	Pout-W	Eff-%	AMPM-deg
1500	0.4 j 0.4	4.3 j 2.9	22.3	52.2	166.7	72.8	-3.9
2000	0.3 j 2.2	2.7 j 1.7	20.8	51.2	130.7	72	-5.6
2500	0.4 j 3.7	2.1 j -0.2	18.2	51.5	141.9	67.1	-6.9

LOADPULL MEASUREMENT, Vds= 28V ldq = 200 mA

1 Tone Pulse CW, pulse width 100us, duty cycle 10%

For Optimum Peak Power @ 2.5dB Compression							
Freq-MHz	Zin_F0	ZI_F0	Gain-dB	Pout-dBm	Pout-W	Eff-%	AMPM-deg
1500	0.7 j -0.0	2.8 j -1.9	18	51.2	130.1	61.7	-1.5
2000	0.6 j 1.8	2.6 j -2.9	16.5	51	124	60.5	-1.5
2500	0.6 j 3.5	2.5 j -3.8	14.6	50.8	120.1	58.5	-2.3

For Optimum Peak Efficiency @ 2.5dB Compression							
Freq-MHz	Zin_F0	ZI_F0	Gain-dB	Pout-dBm	Pout-W	Eff-%	AMPM-deg
1500	0.4 j 0.7	3.9 j 1.4	20.1	48.7	75.3	72.9	-3.5
2000	0.3 j 2.2	2.4 j -0.6	18.7	49.2	83.9	71.7	-5.9
2500	0.4 j 3.8	2.2 j -1.6	16.1	49	78.8	68.5	-6.2

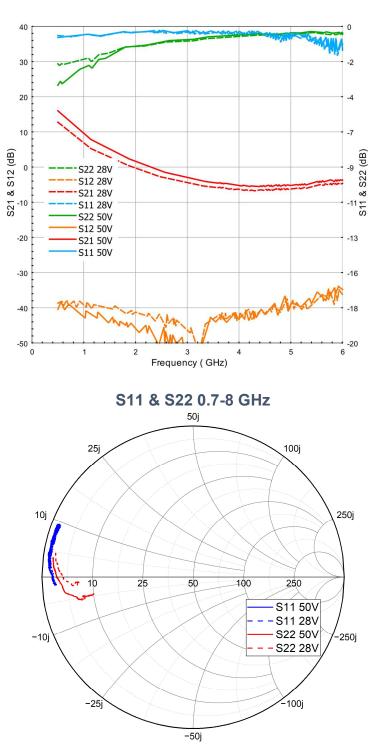

50V, DC - 2.9GHz, 220W GaN HEMT

LOADPULL MEASUREMENT NOTES

Source and Load impedance @ 2nd Harmonic are set to 10 Ohms

With proper 2nd Harmonic termination, expect +5% Efficiency for Source and similar with Drain 2nd Harmonic.

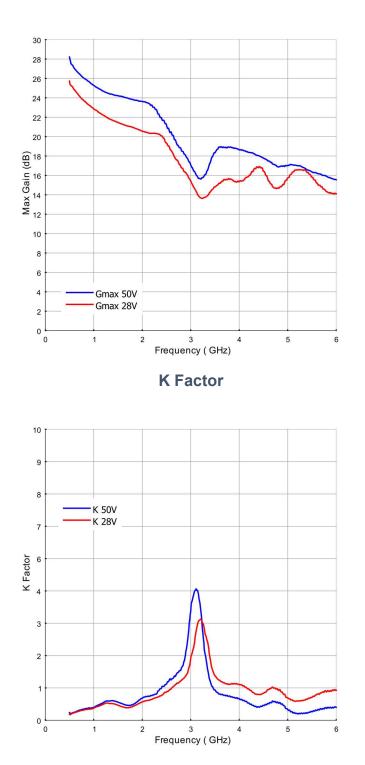
 Z_{LOAD} : Measured Impedance presented to the output of the device in the reference plane Z_{IN} : Measured input Impedance at the input of the device in the reference plane


Impedance Reference Plane

Raw data and full Loadpull measurement report available at request: sales@galliumsemi.com

50V, DC - 2.9GHz, 220W GaN HEMT

BROADBAND S-PARAMETERS MEASUREMENT, Vds= 28 & 50V ldq = 200 mA 1 Tone CW


S Parameters (Mag-dB)

50V, DC – 2.9GHz, 220W GaN HEMT

BROADBAND S-PARAMETERS MEASUREMENT, Vds= 28 & 50V ldq = 200 mA 1 Tone CW

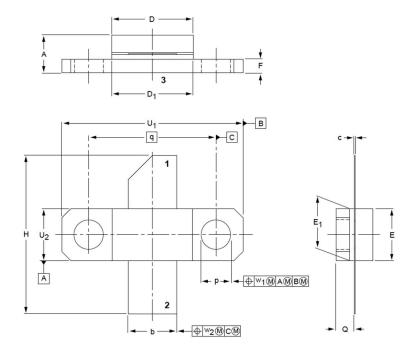
Maximum Available Gain

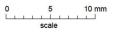
50V, DC – 2.9GHz, 220W GaN HEMT

GaN HEMT BIASING SEQUENCE

To turn the transistor ON

- 1. Set V_{GS} to -5V
- 2. Turn on V_{DS} to normal operation voltage (50V)
- 3. Slowly increase V_{GS} to set I_{DQ} current (200 mA)
- 4. Apply RF power


To turn the transistor OFF


- 1. Turn the RF power off
- 2. Decrease V_{GS} to -5V
- 3. Turn off $V_{D.}$ Wait a few seconds for drain capacitor to discharge
- 4. Turn off V_{GS}

50V, DC - 2.9GHz, 220W GaN HEMT

PACKAGE DIMENSIONS

UNIT	A	b	с	D	D ₁	E	E ₁	F	н	р	Q	q	U ₁	U ₂	w ₁	^w 2
mm	4.67 3.94	5.59 5.33	0.15 0.10	9.25 9.04	9.27 9.02	5.92 5.77	5.97 5.72	1.65 1.40	18.54 17.02	3.43 3.18	2.21 1.96	14.27	20.45 20.19	5.97 5.72	0.25	0.51
inch	0.184 0.155	0.220	0.006			0.233 0.227		0.065	0.73 0.67	0.135 0.125	0.087 0.077	0.562	0.805 0.795		0.010	0.020

PIN CONFIGURATION

DEVICE LABEL

Pin	Input/Output
1	RF Output / Drain Voltage
2	RF Input / Gate Voltage
3 (flange)	Ground

Line 1:	COMPANY NAME: GALLIUM			
Line 2:	PART NUMBER - WAFER #			
Line 3:	AA:	Assembly Code		
	YYWW:	Assembly Date Code		
	R:	Reserved code		

50V, DC - 2.9GHz, 220W GaN HEMT

HANDLING PRECAUTIONS

Parameter	Symbol	Class	Test Methodology
ESD-Human Body Model	HBM	Class 1A (250 V)	ANSI/ESDA/JEDEC Standard JS-001
ESD-Charged Device Model	CDM	Class C3 (1500 V)	ANSI/ESDA/JEDEC Standard JS-002
MSL–Moisture Sensitivity Level	MSL	MSL 1	IPC/JEDEC Standard J-STD-020

RoHS COMPLIANCE

Gallium Semiconductor's Policy on EU RoHS available online: https://www.galliumsemi.com/ files/ugd/3748d3 1107b9788f9845f78f45d424097c4c97.pdf

50V, DC – 2.9GHz, 220W GaN HEMT

CONTACT INFORMATION

To request latest information and samples, please contact us at:

Web: https://www.galliumsemi.com/

Email: <u>sales@galliumsemi.com</u>

IMPORTANT NOTICE

Even though Gallium Semiconductor believes the material in this document to be reliable, it makes no guarantees as to its accuracy and disclaims all responsibility for any damages that may arise from using its contents. Contents in this document are subject to change at any time without prior notice. Customers should obtain and validate the most recent essential information prior to making orders for Gallium Semiconductor products. The information provided here or any use of such material, whether about the information itself or anything it describes, does not grant any party any patent rights, licenses, or other intellectual property rights. Without limiting the generality of the aforementioned, Gallium Semiconductor products are neither warranted nor approved for use as crucial parts in medical, lifesaving, or life-sustaining applications, or in any other applications where a failure would likely result in serious personal injury or death.

GALLIUM SEMICONDUCTOR DISCLAIMS ANY AND ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WITH RESPECT TO SUCH PRODUCTS, WHETHER BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE.