GALLIUM SEMICONDUCTOR

GTH0-0037110S

50V, DC - 3.7GHz, 110W GaN HEMT

FEATURES

Operating Frequency Range: DC to 3.7GHz

• Operating Drain Voltage: 28V & 50V

Maximum Output Power (Psat): 110W

Air Cavity Ceramic package

Suitable for CW, Pulsed, Linear applications

• 100% DC & RF Production Tested

NI-360 Ceramic Package

DESCRIPTION

The GTH0-0037110S is a 110W (P3dB) unmatched discrete GaN-on-SiC HEMT which operates from DC to 3.7GHz on a 50V supply rail. The wide bandwidth of the GTH0-0037110S makes it suitable for a variety of applications including cellular infrastructure, radar, communications, and test instrumentation, and can support CW, linear and pulse operations.

The device is housed in an industry-standard NI-360 Air Cavity Ceramic package. Lead-free and RoHS compliant.

Typical Performances 1 Tone pulsed CW (10% duty cycle, 100µs width), 2nd Harmonics NOT optimized

(1) Optimum Peak Power at 2.5dB in compression

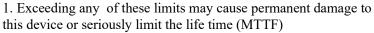
(2) Optimum Peak Efficiency at 2.5dB in compression

Vds=50V, Idq= 109 mA, T_A = 25°C

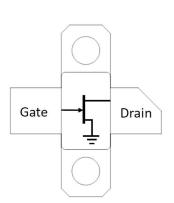
Frequency (MHz)	Pout ⁽¹⁾ (dBm)	Gain ⁽²⁾ (dB)	Eff ⁽²⁾ (%)
800	49.9	22.9	70.6
1000	50.6	22.4	65.3
1500	50.9	21.3	68.2
2000	50.8	20	70.1
2500	50.9	17.9	66.7
3000	50.8	15.9	67
3500	50.9	15	66.7

Vds=28V, Idq= 109 mA, T_A = 25°C

Frequency (MHz)	Pout ⁽¹⁾ (dBm)	Gain ⁽²⁾ (dB)	Eff ⁽²⁾ (%)
800	47.4	21.9	67.2
1000	47.9	20.7	65.5
1500	48.3	19.1	69.9
2000	48.3	17.7	70.5
2500	48.4	16.3	69.2
3000	48.4	14	68.9
3500	48.3	12.7	68.4



50V, DC - 3.7GHz, 110W GaN HEMT


ABSOLUTE MAXIMUM RATINGS(1, 2)

BLOCK DIAGRAM

Parameter	Rating	Symbols and Units
Drain Source Voltage	150	$V_{DS}(V)$
Gate Source Voltage	-8 to +2	V _{GS} (V)
Operating Voltage	55	V _{dsq} (V)
Junction Temperature	+225	T _{JUNC} (°C)
Storage Temperature	-65 to +150	T _{STORAGE} (°C)
Case Operating Temperature	-40 to +105	T _{CASE} (°C)

^{2.} GalliumSemi does not recommend sustained operation above maximum operating conditions.

ELECTRICAL SPECIFICATIONS: TA = 25°C

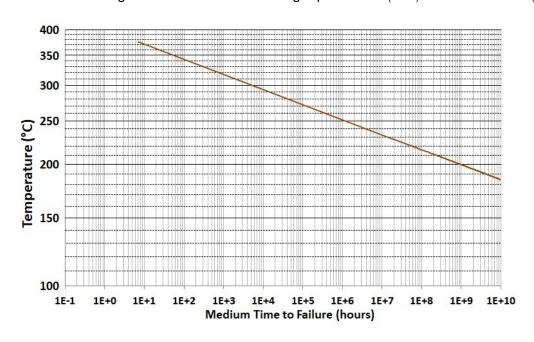
Parameter	Min.	Тур.	Max.	Symbols and Units	Test conditions
Frequency Range	DC		3700	MHz	
DC Characteristics					
Drain Source Breakdown Voltage	150			V _{BDSS} (V)	
Drain Source Leakage Current		9		I _{DLK} (mA)	Vgs = -8V, Vds = 50V
Gate Threshold Voltage	-3.4		-1.5	V _{GS} (V)	Vds = 50V
Operating Conditions					
Gate Bias Voltage		-2.5		V _{GSQ} (V)	
Drain Voltage		50		V _{DSQ} (V)	
Quiescent Drain Current		109		I _{DQ} (mA)	

50V, DC - 3.7GHz, 110W GaN HEMT

RF ELECTRICAL SPECIFICATIONS: $T_A = 25^{\circ}\text{C}$, VDS = 50 V, IDQ = 109 mA, Freq= 3600MHz Note: Performance⁽¹⁾ in GalliumSemi Production Test Fixture, 50 Ω system

Parameter	Symbol	Min.	Тур.	Max.	Units	Notes
Small Signal Gain	G_{ss}		tbd		dB	
Power Gain	G_SAT		tbd		dB	
Saturated Drain Efficiency	DEff _{SAT}		tbd		%	
Saturated Output Power	P _{SAT}		tbd		dBm	
Ruggedness Output mismatch	Ψ	VSWR =	: 10:1, all an	gles		No damage or shift in performances

^{1. 1} Tone Pulse CW, pulse width 100us, duty cycle 10%


50V, DC - 3.7GHz, 110W GaN HEMT

THERMAL AND RELABILITY INFORMATION -CW (1, 2, 3): T_c = 85°C

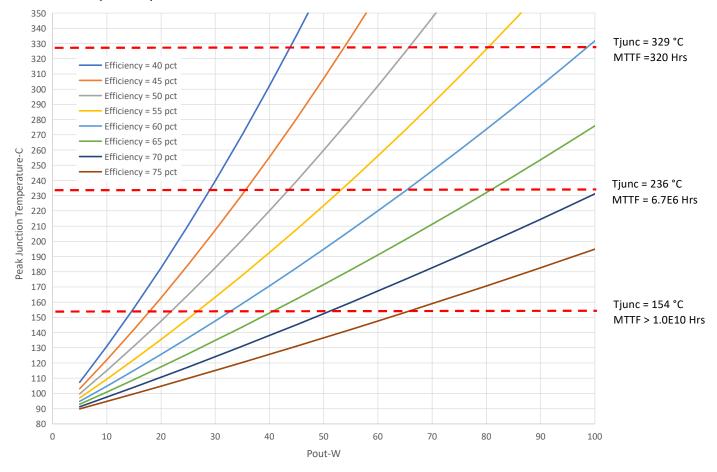
Parameter	Test condition	Value	Units	Notes
Channel Temperature, Tch	_	154	°C	
Rth	Pdiss 22 W	3.2	°C/W	
MTTF		>1.0E+10	Hrs	
Channel Temperature, Tch		236	°C	
Rth	Pdiss 44 W	3.4	°C/W	
MTTF		6.7E6	Hrs	
Channel Temperature, Tch		329	°C	
Rth	Pdiss 66 W	3.7	°C/W	
MTTF		320	Hrs	

^{1.}Using 5um thermal grease - 4W/m-K.

^{3.}Rth vs Dissipated Power can be generalized with the following equation: $Rth_{(^{\circ}C/W)} = 0.0122 \text{ x Pdiss}_{(W)} + 2.8874$

^{2.}Thermal Resistance using Finite Element Analysis (FEA) simulation, calibrated with Infrared measurement on surface temperature.

50V, DC - 3.7GHz, 110W GaN HEMT


CW OPERATION

The device can withstand CW operation with respect to the application's MTTF (Life time vs. Peak Junction Temperature).

The graph^(1,2) below shows the Peak Junction Temperature vs. the Output Power & Efficiency trade-off, using the following equations:

- Tjunc(°C) = Pdiss(w) x Rth(°C/W)
- Pdiss(w) = (Pout(w)/ Efficiency(%)) Pout(w)

E.g.: The device can be used for Pout = 80W CW with Efficiency of 55%, Tjunc will be 330°C, leading to a LifeTime (MTTF) of 320 Hrs.

Notes:

- 1. 5um thermal grease 4W/m-K
- 2. Back of pkg is 85°C infinite heat sink

50V, DC - 3.7GHz, 110W GaN HEMT

LOADPULL MEASUREMENT, Vds= 50V ldq = 109 mA

1 Tone Pulse CW, pulse width 100us, duty cycle 10%

		For Optimum	n Peak Power	@ 2.5dB Comp	ression		
Freq-MHz	Zin_F0	ZI_F0	Gain-dB	Pout-dBm	Pout-W	Eff-%	AMPM-deg
800	2.5 j -6.7	9.5 j 1.6	22.6	49.9	100	62.1	0.4
1000	2.0 j -4.9	7.9 j 0.6	21	50.6	117	55.6	-2.1
1500	1.5 j -1.3	7.4 j 1.8	20.1	50.9	123.3	60.7	-0.1
2000	1.3 j 1.8	7.4 j 1.2	18.3	50.8	121	62.7	-1.1
2500	1.2 j 4.1	5.6 j -0.7	16.3	50.9	121.8	58.2	-1.2
3000	1.6 j 7.4	6.0 j -1.1	14.8	50.8	119.6	59.9	-1.1
3500	2.0 j 10.1	5.7 j -2.5	13.2	50.9	121.2	57.9	-1.1

		For Optimum	Peak Efficiend	cy @ 2.5dB Con	npression		
Freq-MHz	Zin_F0	ZI_F0	Gain-dB	Pout-dBm	Pout-W	Eff-%	AMPM-deg
800	1.9 j -4.6	18.3 j 14.4	22.9	47.1	51.2	70.6	1.6
1000	1.6 j -3.5	12.2 j 7.7	22.4	49	80.5	65.3	-1.5
1500	1.0 j -0.3	9.4 j 7.2	21.3	49.6	91	68.2	0.1
2000	0.8 j 2.8	5.8 j 5.7	20	49.1	81.2	70.1	-1.8
2500	1.0 j 4.7	4.5 j 3.1	17.9	49.4	87.4	66.7	-3.6
3000	1.3 j 8.0	3.8 j 1.3	15.9	49.6	90.1	67	-3.6
3500	1.5 j 10.7	3.4 j 0.2	15	49.4	86.6	66.7	-3.3

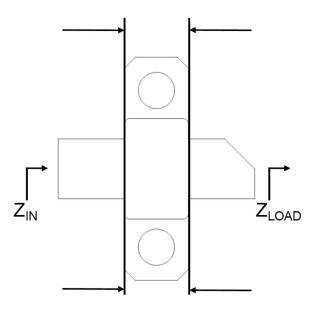
50V, DC - 3.7GHz, 110W GaN HEMT

LOADPULL MEASUREMENT, Vds= 28V ldq = 109 mA

1 Tone Pulse CW, pulse width 100us, duty cycle 10%

For Optimum Peak Power @ 2.5dB Compression								
Freq-MHz	Zin_F0	ZI_F0	Gain-dB	Pout-dBm	Pout-W	Eff-%	AMPM-deg	
800	2.9 j -6.9	4.8 j -1.8	19.9	47.4	55.2	53.7	0.4	
1000	1.6 j -4.8	5.0 j -0.1	20.2	47.9	61.8	57.2	-1.7	
1500	1.6 j -1.1	5.2 j -1.6	17.7	48.3	67.1	58.4	-0.5	
2000	1.2 j 1.9	4.7 j -1.9	16.5	48.3	68	62	-1.8	
2500	1.3 j 4.3	5.3 j -3.3	14.5	48.4	68.4	61.4	-1.5	
3000	1.5 j 7.2	4.6 j -4.2	12.8	48.4	68.1	61.1	-1.6	
3500	2 0 i 10 6	5 0 i -5 3	11.6	48 3	68.3	60.7	-2 Д	

		For Optimum	Peak Efficien	cy @ 2.5dB Con	npression		
Freq-MHz	Zin_F0	ZI_F0	Gain-dB	Pout-dBm	Pout-W	Eff-%	AMPM-deg
800	1.7 j -5.0	11.6 j 2.7	21.9	45.6	36.9	67.2	0
1000	1.5 j -3.2	10.4 j 4.0	20.7	45.8	38.4	65.5	-1.5
1500	1.1 j -0.5	7.0 j 1.4	19.1	47.8	60.5	69.9	-1.2
2000	0.8 j 3.0	4.8 j 2.5	17.7	46.2	42.6	70.5	-4.6
2500	0.8 j 5.4	3.8 j 0.4	16.3	46.5	44.5	69.2	-5.1
3000	1.3 j 8.1	3.9 j -1.4	14	47.1	50.9	68.9	-4.3
3500	1.6 j 11.0	3.3 j -2.6	12.7	46.9	48.7	68.4	-5.4

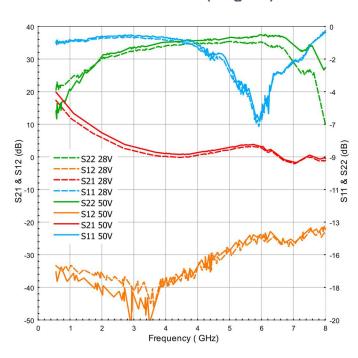

50V, DC - 3.7GHz, 110W GaN HEMT

LOADPULL MEASUREMENT NOTES

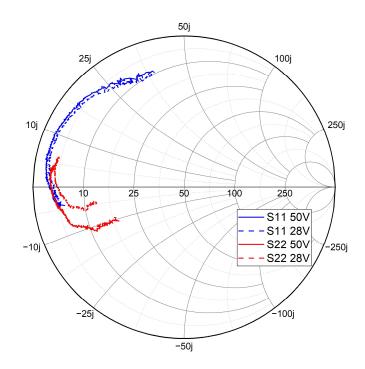
Source and Load impedance @ 2nd Harmonic are set to 10 Ohms With proper 2nd Harmonic termination, expect +5% Efficiency for Source and similar with Drain 2nd Harmonic.

 Z_{LOAD} : Measured Impedance presented to the output of the device in the reference plane Z_{IN} : Measured input Impedance at the input of the device in the reference plane

Impedance Reference Plane

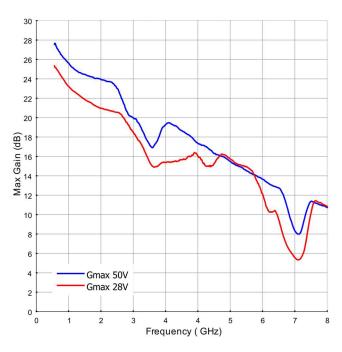


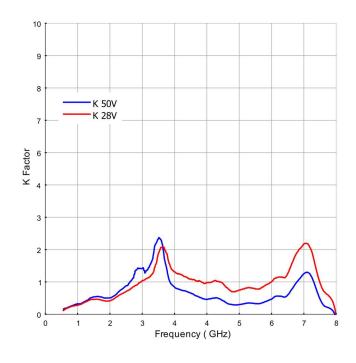
Raw data and full Loadpull measurement report available at request: sales@galliumsemi.com


50V, DC - 3.7GHz, 110W GaN HEMT

BROADBAND S-PARAMETERS MEASUREMENT, Vds= 28 & 50V ldq = 109 mA 1 Tone CW

S Parameters (Mag-dB)


S11 & S22 0.7-8 GHz


50V, DC - 3.7GHz, 110W GaN HEMT

BROADBAND S-PARAMETERS MEASUREMENT, Vds= 28 & 50V ldq = 109 mA 1 Tone CW

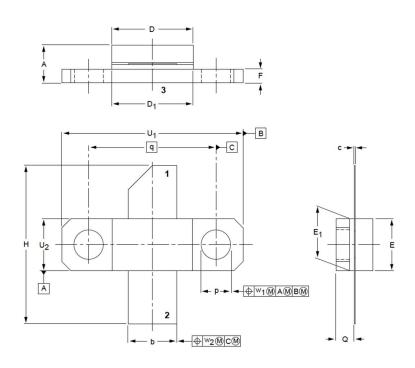
Maximum Available Gain

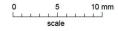
K Factor

50V, DC - 3.7GHz, 110W GaN HEMT

Gan Hemt Biasing Sequence

To turn the transistor ON


- 1. Set V_{GS} to -5V
- 2. Turn on V_{DS} to normal operation voltage (50V)
- 3. Slowly increase V_{GS} to set I_{DQ} current (109 mÅ)
- 4. Apply RF power


To turn the transistor OFF

- 1. Turn the RF power off
- 2. Decrease V_{GS} to -5V
- 3. Turn off $V_{\text{D.}}$ Wait a few seconds for drain capacitor to discharge
- 4. Turn off V_{GS}

50V, DC - 3.7GHz, 110W GaN HEMT

PACKAGE DIMENSIONS

DIMENSIONS (millimetre dimensions are derived from the original inch dimensions)

										,						
UNIT	Α	b	С	D	D ₁	E	E ₁	F	н	р	Q	q	U ₁	U ₂	w ₁	w ₂
mm	4.67 3.94	5.59 5.33	0.15 0.10	9.25 9.04	9.27 9.02	5.92 5.77	5.97 5.72	1.65 1.40	18.54 17.02	3.43 3.18	2.21 1.96	14.27	20.45 20.19	5.97 5.72	0.25	0.51
inch			0.006 0.004									0.562	0.805 0.795	0.235 0.225	0.010	0.020

PIN CONFIGURATION

Pin	Input/Output
1	RF Output / Drain Voltage
2	RF Input / Gate Voltage
3 (flange)	Ground

DEVICE LABEL

Line 1: COMPANY NAME: GALLIUM				
Line 2:	PART NUMBER - WAFER #			
Line 3:	AA:	Assembly Code		
	YYWW:	Assembly Date Code		
	R:	Reserved code		

50V, DC - 3.7GHz, 110W GaN HEMT

HANDLING PRECAUTIONS

Parameter	Symbol	Class	Test Methodology
ESD-Human Body Model	HBM	Class 1A (250 V)	ANSI/ESDA/JEDEC Standard JS-001
ESD-Charged Device Model	CDM	Class C3 (1500 V)	ANSI/ESDA/JEDEC Standard JS-002
MSL – Moisture Sensitivity Level	MSL	MSL 1	IPC/JEDEC Standard J-STD-020

ROHS COMPLIANCE

Gallium Semiconductor's Policy on EU RoHS available online:

https://www.galliumsemi.com/ files/ugd/3748d3 1107b9788f9845f78f45d424097c4c97.pdf

50V, DC - 3.7GHz, 110W GaN HEMT

CONTACT INFORMATION

To request latest information and samples, please contact us at:

Web: https://www.galliumsemi.com/

Email: sales@galliumsemi.com

IMPORTANT NOTICE

Even though Gallium Semiconductor believes the material in this document to be reliable, it makes no guarantees as to its accuracy and disclaims all responsibility for any damages that may arise from using its contents. Contents in this document are subject to change at any time without prior notice. Customers should obtain and validate the most recent essential information prior to making orders for Gallium Semiconductor products. The information provided here or any use of such material, whether about the information itself or anything it describes, does not grant any party any patent rights, licenses, or other intellectual property rights. Without limiting the generality of the aforementioned, Gallium Semiconductor products are neither warranted nor approved for use as crucial parts in medical, lifesaving, or life-sustaining applications, or in any other applications where a failure would likely result in serious personal injury or death.

GALLIUM SEMICONDUCTOR DISCLAIMS ANY AND ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WITH RESPECT TO SUCH PRODUCTS, WHETHER BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE.